skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse Determination of Spatially Varying Heat Capacity and Thermal Conductivity in Arbitrary 2D Objects
A methodology for non-destructive simultaneous estimation of spatially varying thermal conductivity and heat capacity in 2D solid objects was developed that requires only boundary measurements of temperatures. The spatial distributions were determined by minimizing the normalized sum of the least-squares differences between measured and calculated values of the boundary temperatures. Computing time was significantly reduced for the entire inverse parameter identification process by utilizing a metamodel created by an analytical response surface supported by an affordable number of numerical solutions of the temperature fields obtained by the high fidelity finite element analyses. The minimization was performed using a combination of particle swarm optimization and the BFGS algorithm. The methodology has shown to accurately predict linear and nonlinear spatial distributions of thermal conductivity and heat capacity in arbitrarily shaped multiply-connected 2D objects even in situations with noisy measurement data thus proving that it is robust and accurate. The current drawback of this method is that it requires an a priori knowledge of the general spatial analytic variation of the physical properties. This can be remedied by representing such variations using products of infinite series such as Fourier or Chebyshev and determining correct values of their coefficients.  more » « less
Award ID(s):
1642253
PAR ID:
10072435
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Symposium on Advances in Computational Heat Transfer, paper CHT-17-106, Naples, Italy, May 28-June 1, 2017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of cryogenic semiconductor electronics and superconducting quantum computing requires composite materials that can provide both thermal conduction and thermal insulation. We demonstrated that at cryogenic temperatures, the thermal conductivity of graphene composites can be both higher and lower than that of the reference pristine epoxy, depending on the graphene filler loading and temperature. There exists a well-defined cross-over temperature—above it, the thermal conductivity of composites increases with the addition of graphene; below it, the thermal conductivity decreases with the addition of graphene. The counter-intuitive trend was explained by the specificity of heat conduction at low temperatures: graphene fillers can serve as, both, the scattering centers for phonons in the matrix material and as the conduits of heat. We offer a physical model that explains the experimental trends by the increasing effect of the thermal boundary resistance at cryogenic temperatures and the anomalous thermal percolation threshold, which becomes temperature dependent. The obtained results suggest the possibility of using graphene composites for, both, removing the heat and thermally insulating components at cryogenic temperatures—a capability important for quantum computing and cryogenically cooled conventional electronics. 
    more » « less
  2. Perovskite materials, of which strontium titanate (STO) and its thin films are an example, have attracted significant scientific interest because of their desirable properties and the potential to tune thermal conductivity by employing several techniques. Notably, strontium titanate thin films on silicon (Si) substrates serve as a fundamental platform for integrating various oxides onto Si substrates, making it crucial to understand the thermal properties of STO on Si. This work investigates the thermal conductivity of STO thin films on an Si substrate for varying film thicknesses (12, 50, 80, and 200 nm) at room temperature (∼300 K). The thin films are deposited using molecular beam epitaxy on the Si substrate and their thermal conductivity is characterized using the frequency domain thermoreflectance (FDTR) method. The measured values range from 7.4 ± 0.74 for the 200 nm thick film to 0.8 ± 0.1 W m−1 K−1 for the 12 nm thick film, showing a large effect of the film thickness on the thermal conductivity values. The trend of the values is diminishing with the corresponding decrease in the thin film thickness, with a reduction of 38%–93% in the thermal conductivity values, for film thicknesses ranging from 200 to 12 nm. This reduction in the values is relative to the bulk single crystal values of STO, which may range from 11 to 13.5 W m−1 K−1 [Yu et al., Appl. Phys. Lett. 92, 191911 (2008) and Fumega et al., Phys. Rev. Mater. 4, 033606 (2020)], as measured by our FDTR-based experiment. The study also explores the evaluation of volumetric heat capacity (Cp). The measured volumetric heat capacity for the 200 nm thin film is 3.07 MJ m−3 K−1, which is in reasonable agreement with the values available in the literature. 
    more » « less
  3. Temperature‐dependent thermal properties of phase‐pure polycrystalline ternary chalcogenides Cu4Bi4S9and Cu4Bi4Se9are reported. The structure and bonding in these materials result in very low thermal conductivity values (<0.8 W m−1 K−1at room temperature) for both materials. The lattice contribution, Debye temperatures, and Sommerfeld coefficient are obtained from low‐temperature heat capacity data that also indicate very small electronic contributions to the heat capacity for these materials. This study aids in the identification of new nontoxic, earth‐abundant resistive ternary chalcogenide materials with low thermal conductivity for potential thermal barrier coating and rewriteable storage applications. 
    more » « less
  4. Abstract The thermal conductivity of many materials depends on temperature due to several factors, including variation of heat capacity with temperature, changes in vibrational dynamics with temperature, and change in volume with temperature. For proteins some, but not all, of these influences on the variation of thermal conductivity with temperature have been investigated in the past. In this study, we examine the influence of change in volume, and corresponding changes in vibrational dynamics, on the temperature dependence of the thermal conductivity. Using a measured value for the coefficient of thermal expansion and recently computed values for the Grüneisen parameter of proteins we find that the thermal conductivity increases with increasing temperature due to change in volume with temperature. We compare the impact of thermal expansion on the variation of the thermal conductivity with temperature found in this study with contributions of heat capacity and anharmonic coupling examined previously. Using values of thermal transport coefficients computed for proteins we also model heating of water in a protein solution following photoexcitation. 
    more » « less
  5. Abstract The Fourier heat conduction and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experimental setup. Numerical solutions enable use of realistic boundary conditions, such as convective cooling from the various surfaces of the substrate and transducer. The equations were solved in time domain and the phase lag between the temperature at the center of the transducer and the modulated pump laser signal were computed for a modulation frequency range of 200 kHz to 200 MHz. It was found that the numerical predictions fit the experimentally measured phase lag better than analytical frequency-domain solutions of the Fourier heat equation based on Hankel transforms. The effects of boundary conditions were investigated and it was found that if the substrate (computational domain) is sufficiently large, the far-field boundary conditions have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was also treated as a parameter, and was found to have some effect on the predicted thermal conductivity, but only in certain regimes. The hyperbolic heat conduction equation yielded identical results as the Fourier heat conduction equation for the particular case studied. The thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be 108 W/m/K, which is slightly different from previously reported values for the same experimental data. 
    more » « less