skip to main content


Title: Adaptive Exploration-Exploitation Tradeoff for Opportunistic Bandits
In this paper, we propose and study opportunistic bandits - a new variant of bandits where the regret of pulling a suboptimal arm varies under different environmental conditions, such as network load or produce price. When the load/price is low, so is the cost/regret of pulling a suboptimal arm (e.g., trying a suboptimal network configuration). Therefore, intuitively, we could explore more when the load/price is low and exploit more when the load/price is high. Inspired by this intuition, we propose an Adaptive Upper-Confidence-Bound (AdaUCB) algorithm to adaptively balance the exploration-exploitation tradeoff for opportunistic bandits. We prove that AdaUCB achieves O(log T) regret with a smaller coefficient than the traditional UCB algorithm. Furthermore, AdaUCB achieves O(1) regret with respect to T if the exploration cost is zero when the load level is below a certain threshold. Last, based on both synthetic data and real-world traces, experimental results show that AdaUCB significantly outperforms other bandit algorithms, such as UCB and TS (Thompson Sampling), under large load/price fluctuation.  more » « less
Award ID(s):
1718901 1547461 1423542
NSF-PAR ID:
10072465
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ICML 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose and study opportunistic contextual bandits - a special case of contextual bandits where the exploration cost varies under different environmental conditions, such as network load or return variation in recommendations. When the exploration cost is low, so is the actual regret of pulling a sub-optimal arm (e.g., trying a suboptimal recommendation). Therefore, intuitively, we could explore more when the exploration cost is relatively low and exploit more when the exploration cost is relatively high. Inspired by this intuition, for opportunistic contextual bandits with Linear payoffs, we propose an Adaptive Upper-Confidence-Bound algorithm (AdaLinUCB) to adaptively balance the exploration-exploitation trade-off for opportunistic learning. We prove that AdaLinUCB achieves O((log T)^2) problem-dependent regret upper bound, which has a smaller coefficient than that of the traditional LinUCB algorithm. Moreover, based on both synthetic and real-world dataset, we show that AdaLinUCB significantly outperforms other contextual bandit algorithms, under large exploration cost fluctuations.

     
    more » « less
  2. We study model-free reinforcement learning (RL) algorithms for infinite-horizon average-reward Markov decision process (MDP), which is more appropriate for applications that involve continuing operations not divided into episodes. In contrast to episodic/discounted MDPs, theoretical understanding of model-free RL algorithms is relatively inadequate for the average-reward setting. In this paper, we consider both the online setting and the setting with access to a simulator. We develop computationally efficient model-free algorithms that achieve sharper guarantees on regret/sample complexity compared with existing results. In the online setting, we design an algorithm, UCB-AVG, based on an optimistic variant of variance-reduced Q-learning. We show that UCB-AVG achieves a regret bound $\widetilde{O}(S^5A^2sp(h^*)\sqrt{T})$ after $T$ steps, where $S\times A$ is the size of state-action space, and $sp(h^*)$ the span of the optimal bias function. Our result provides the first computationally efficient model-free algorithm that achieves the optimal dependence in $T$ (up to log factors) for weakly communicating MDPs, which is necessary for low regret. In contrast, prior results either are suboptimal in $T$ or require strong assumptions of ergodicity or uniformly mixing of MDPs. In the simulator setting, we adapt the idea of UCB-AVG to develop a model-free algorithm that finds an $\epsilon$-optimal policy with sample complexity $\widetilde{O}(SAsp^2(h^*)\epsilon^{-2} + S^2Asp(h^*)\epsilon^{-1}).$ This sample complexity is near-optimal for weakly communicating MDPs, in view of the minimax lower bound $\Omega(SAsp(^*)\epsilon^{-2})$. Existing work mainly focuses on ergodic MDPs and the results typically depend on $t_{mix},$ the worst-case mixing time induced by a policy. We remark that the diameter $D$ and mixing time $t_{mix}$ are both lower bounded by $sp(h^*)$, and $t_{mix}$ can be arbitrarily large for certain MDPs. On the technical side, our approach integrates two key ideas: learning an $\gamma$-discounted MDP as an approximation, and leveraging reference-advantage decomposition for variance in optimistic Q-learning. As recognized in prior work, a naive approximation by discounted MDPs results in suboptimal guarantees. A distinguishing feature of our method is maintaining estimates of value-difference between state pairs to provide a sharper bound on the variance of reference advantage. We also crucially use a careful choice of the discounted factor $\gamma$ to balance approximation error due to discounting and the statistical learning error, and we are able to maintain a good-quality reference value function with $O(SA)$ space complexity. 
    more » « less
  3. In this paper, we study kernelized bandits with distributed biased feedback. This problem is motivated by several real-world applications (such as dynamic pricing, cellular network configuration, and policy making), where users from a large population contribute to the reward of the action chosen by a central entity, but it is difficult to collect feedback from all users. Instead, only biased feedback (due to user heterogeneity) from a subset of users may be available. In addition to such partial biased feedback, we are also faced with two practical challenges due to communication cost and computation complexity. To tackle these challenges, we carefully design a new distributed phase-then-batch-based elimination (DPBE) algorithm, which samples users in phases for collecting feedback to reduce the bias and employs maximum variance reduction to select actions in batches within each phase. By properly choosing the phase length, the batch size, and the confidence width used for eliminating suboptimal actions, we show that DPBE achieves a sublinear regret of ~O(T1-α/2 +√γT T), where α ∈ (0,1) is the user-sampling parameter one can tune. Moreover, DPBE can significantly reduce both communication cost and computation complexity in distributed kernelized bandits, compared to some variants of the state-of-the-art algorithms (originally developed for standard kernelized bandits). Furthermore, by incorporating various differential privacy models (including the central, local, and shuffle models), we generalize DPBE to provide privacy guarantees for users participating in the distributed learning process. Finally, we conduct extensive simulations to validate our theoretical results and evaluate the empirical performance. 
    more » « less
  4. In online recommendation, customers arrive in a sequential and stochastic manner from an underlying distribution and the online decision model recommends a chosen item for each arriving individual based on some strategy. We study how to recommend an item at each step to maximize the expected reward while achieving user-side fairness for customers, i.e., customers who share similar profiles will receive a similar reward regardless of their sensitive attributes and items being recommended. By incorporating causal inference into bandits and adopting soft intervention to model the arm selection strategy, we first propose the d-separation based UCB algorithm (D-UCB) to explore the utilization of the d-separation set in reducing the amount of exploration needed to achieve low cumulative regret. Based on that, we then propose the fair causal bandit (F-UCB) for achieving the counterfactual individual fairness. Both theoretical analysis and empirical evaluation demonstrate effectiveness of our algorithms. 
    more » « less
  5. Krause, Andreas and (Ed.)
    We consider the problem of global optimization with noisy zeroth order oracles — a well-motivated problem useful for various applications ranging from hyper-parameter tuning for deep learning to new material design. Existing work relies on Gaussian processes or other non-parametric family, which suffers from the curse of dimensionality. In this paper, we propose a new algorithm GO-UCB that leverages a parametric family of functions (e.g., neural networks) instead. Under a realizable assumption and a few other mild geometric conditions, we show that GO-UCB achieves a cumulative regret of $\tilde{O}(\sqrt{T})$ where $T$ is the time horizon. At the core of GO-UCB is a carefully designed uncertainty set over parameters based on gradients that allows optimistic exploration. Synthetic and real-world experiments illustrate GO-UCB works better than popular Bayesian optimization approaches, even if the model is misspecified. 
    more » « less