skip to main content


Search for: All records

Award ID contains: 1423542

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose and study opportunistic bandits - a new variant of bandits where the regret of pulling a suboptimal arm varies under different environmental conditions, such as network load or produce price. When the load/price is low, so is the cost/regret of pulling a suboptimal arm (e.g., trying a suboptimal network configuration). Therefore, intuitively, we could explore more when the load/price is low and exploit more when the load/price is high. Inspired by this intuition, we propose an Adaptive Upper-Confidence-Bound (AdaUCB) algorithm to adaptively balance the exploration-exploitation tradeoff for opportunistic bandits. We prove that AdaUCB achieves O(log T) regret with a smaller coefficient than the traditional UCB algorithm. Furthermore, AdaUCB achieves O(1) regret with respect to T if the exploration cost is zero when the load level is below a certain threshold. Last, based on both synthetic data and real-world traces, experimental results show that AdaUCB significantly outperforms other bandit algorithms, such as UCB and TS (Thompson Sampling), under large load/price fluctuation. 
    more » « less
  2. Cellular network configuration is critical for network performance. Current practice is labor-intensive, errorprone, and far from optimal. To automate efficient cellular network configuration, in this work, we propose an onlinelearning-based joint-optimization approach that addresses a few specific challenges: limited data availability, convoluted sample data, highly complex optimization due to interactions among neighboring cells, and the need to adapt to network dynamics. In our approach, to learn an appropriate utility function for a cell, we develop a neural-network-based model that addresses the convoluted sample data issue and achieves good accuracy based on data aggregation. Based on the utility function learned, we formulate a global network configuration optimization problem. To solve this high-dimensional nonconcave maximization problem, we design a Gibbs-sampling-based algorithm that converges to an optimal solution when a technical parameter is small enough. Furthermore, we design an online scheme that updates the learned utility function and solves the corresponding maximization problem efficiently to adapt to network dynamics. To illustrate the idea, we use the case study of pilot power configuration. Numerical results illustrate the effectiveness of the proposed approach. 
    more » « less
  3. Cellular network configuration is critical for network performance. Current practice is labor-intensive, errorprone, and far from optimal. To automate efficient cellular network configuration, in this work, we propose an onlinelearning-based joint-optimization approach that addresses a few specific challenges: limited data availability, convoluted sample data, highly complex optimization due to interactions among neighboring cells, and the need to adapt to network dynamics. In our approach, to learn an appropriate utility function for a cell, we develop a neural-network-based model that addresses the convoluted sample data issue and achieves good accuracy based on data aggregation. Based on the utility function learned, we formulate a global network configuration optimization problem. To solve this high-dimensional nonconcave maximization problem, we design a Gibbs-samplingbased algorithm that converges to an optimal solution when a technical parameter is small enough. Furthermore, we design an online scheme that updates the learned utility function and solves the corresponding maximization problem efficiently to adapt to network dynamics. To illustrate the idea, we use the case study of pilot power configuration. Numerical results illustrate the effectiveness of the proposed approach. 
    more » « less