With the increasing availability of GPS trajectory data, map construction algorithms have been developed that automatically construct road maps from this data. In order to assess the quality of such (constructed) road maps, the need for meaningful road map comparison algorithms becomes increasingly important. Indeed, different approaches for map comparison have been recently proposed; however, most of these approaches assume that the road maps are modeled as undirected embedded planar graphs. In this paper, we study map comparison algorithms for more realistic models of road maps: directed roads as well as weighted roads. In particular, we address two main questions: how close are the graphs to each other, and how close is the information presented by the graphs (i.e., traffic times, trajectories, and road type)? We propose new road network comparisons and give illustrative examples. Furthermore, our approaches do not only apply to road maps but can be used to compare other kinds of graphs as well.
more »
« less
Clustering Trajectories for Map Construction
We propose a new approach for constructing the underlying map from trajectory data. Our algorithm is based on the idea that road segments can be identified as stable subtrajectory clusters in the data. For this, we consider how subtrajectory clusters evolve for varying distance values, and choose stable values for these. In doing so we avoid a global proximity parameter. Within trajectory clusters, we choose representatives, which are combined to form the map. We experimentally evaluate our algorithm on vehicle and hiking tracking data. These experiments demonstrate that our approach can naturally separate roads that run close to each other and can deal with outliers in the data, two issues that are notoriously difficult in road network reconstruction.
more »
« less
- Award ID(s):
- 1637576
- PAR ID:
- 10072475
- Date Published:
- Journal Name:
- Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
- Page Range / eLocation ID:
- Article 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Current wireless networks employ sophisticated multi-user transmission techniques to fully utilize the physical layer resources for data transmission. At the MAC layer, these techniques rely on a semi-static map that translates the channel quality of users to the potential transmission rate (more precisely, a map from the Channel Quality Index to the Modulation and Coding Scheme) for user selection and scheduling decisions. However, such a static map does not adapt to the actual deployment scenario and can lead to large performance losses. Furthermore, adaptively learning this map can be inefficient, particularly when there are a large number of users. In this work, we make this learning efficient by clustering users. Specifically, we develop an online learning approach that jointly clusters users and channel-states, and learns the associated rate regions of each cluster. This approach generates a scenario-specific map that replaces the static map that is currently used in practice. Furthermore, we show that our learning algorithm achieves sub- linear regret when compared to an omniscient genie. Next, we develop a user selection algorithm for multi-user scheduling using the learned user-clusters and associated rate regions. Our algorithms are validated on the WiNGS simulator from AT&T Labs, that implements the PHY/MAC stack and simulates the channel. We show that our algorithm can efficiently learn user clusters and the rate regions associated with the user sets for any observed channel state. Moreover, our simulations show that a deployment-scenario-specific map significantly outperforms the current static map approach for resource allocation at the MAC layer.more » « less
-
Modern smart cities need smart transportation solutions to quickly detect various traffic emergencies and incidents in the city to avoid cascading traffic disruptions. To materialize this, roadside units and ambient transportation sensors are being deployed to collect speed data that enables the monitoring of traffic conditions on each road segment. In this paper, we first propose a scalable data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. Second, using cluster-level detection, we propose a folded Gaussian classifier to pinpoint the particular segment in a cluster where the incident happened in an automated manner. We perform extensive experimental validation using mobility data collected from four cities in Tennessee, compare with the state-of-the-art ML methods, to prove that our method can detect incidents within each cluster in real-time and outperforms known ML methods.more » « less
-
Modern smart cities are focusing on smart transportation solutions to detect and mitigate the effects of various traffic incidents in the city. To materialize this, roadside units and ambient trans-portation sensors are being deployed to collect vehicular data that provides real-time traffic monitoring. In this paper, we first propose a real-time data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. We perform extensive experimental validation using mobility data collected from the City of Nashville, Tennessee, and prove that the method can detect incidents within each cluster in real-time.more » « less
-
This paper focuses on inverse reinforcement learning (IRL) for autonomous robot navigation using semantic observations. The objective is to infer a cost function that explains demonstrated behavior while relying only on the expert’s observations and state-control trajectory. We develop a map encoder, which infers semantic class probabilities from the observation sequence, and a cost encoder, defined as deep neural network over the semantic features. Since the expert cost is not directly observable, the representation parameters can only be optimized by differentiating the error between demonstrated controls and a control policy computed from the cost estimate. The error is optimized using a closed-form subgradient computed only over a subset of promising states via a motion planning algorithm. We show that our approach learns to follow traffic rules in the autonomous driving CARLA simulator by relying on semantic observations of cars, sidewalks and road lanes.more » « less
An official website of the United States government

