skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bandit learning- based online user clustering and selection for cellular networks. In pages 1–10, September 2022.
Current wireless networks employ sophisticated multi-user transmission techniques to fully utilize the physical layer resources for data transmission. At the MAC layer, these techniques rely on a semi-static map that translates the channel quality of users to the potential transmission rate (more precisely, a map from the Channel Quality Index to the Modulation and Coding Scheme) for user selection and scheduling decisions. However, such a static map does not adapt to the actual deployment scenario and can lead to large performance losses. Furthermore, adaptively learning this map can be inefficient, particularly when there are a large number of users. In this work, we make this learning efficient by clustering users. Specifically, we develop an online learning approach that jointly clusters users and channel-states, and learns the associated rate regions of each cluster. This approach generates a scenario-specific map that replaces the static map that is currently used in practice. Furthermore, we show that our learning algorithm achieves sub- linear regret when compared to an omniscient genie. Next, we develop a user selection algorithm for multi-user scheduling using the learned user-clusters and associated rate regions. Our algorithms are validated on the WiNGS simulator from AT&T Labs, that implements the PHY/MAC stack and simulates the channel. We show that our algorithm can efficiently learn user clusters and the rate regions associated with the user sets for any observed channel state. Moreover, our simulations show that a deployment-scenario-specific map significantly outperforms the current static map approach for resource allocation at the MAC layer.  more » « less
Award ID(s):
1910112
PAR ID:
10366197
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE WIOPT
Page Range / eLocation ID:
1-10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider an LTE downlink scheduling system where a base station allocates resource blocks (RBs) to users running delay-sensitive applications. We aim to find a scheduling policy that minimizes the queuing delay experienced by the users. We formulate this problem as a Markov Decision Process (MDP) that integrates the channel quality indicator (CQI) of each user in each RB, and queue status of each user. To solve this complex problem involving high dimensional state and action spaces, we propose a Deep Reinforcement Learning based scheduling framework that utilizes the Deep Deterministic Policy Gradient (DDPG) algorithm to minimize the queuing delay experienced by the users. Our extensive experiments demonstrate that our approach outperforms state-of-the-art benchmarks in terms of average throughput, queuing delay, and fairness, achieving up to 55% lower queuing delay than the best benchmark. 
    more » « less
  2. Multiuser MIMO (MU-MIMO) technologies can help provide rapidly growing needs for high data rates in modern wireless networks. Co-channel interference (CCI) among users in the same resource-sharing group (RSG) presents a serious user scheduling challenge to achieve high overall MU-MIMO capacity. Since CCI is closely related to correlation among spatial user channels, it would be natural to schedule co-channel user groups with low inter-user channel correlation. Yet, establishing RSGs with low co-channel correlations for large user populations is an NP-hard problem. More practically, user scheduling for wideband channels exhibiting distinct channel characteristics in each frequency band remains an open question. In this work, we proposed a novel wideband user grouping and scheduling algorithm named SC-MS. The proposed SC-MS algorithm first leverages spectral clustering to obtain a preliminary set of user groups. Next, we apply a post-processing step to identify user cliques from the preliminary groups to further mitigate CCI. Our last step groups users into RSGs for scheduling such that the sum of user clique sizes across the multiple frequency bands is maximized. Simulation results demonstrate network performance gain over benchmark methods in terms of sum rate and fairness. 
    more » « less
  3. null (Ed.)
    Modern Public Safety Networks (PSNs) are assisted by Unmanned Aerial Vehicles (UAVs) to provide a resilient communication paradigm during catastrophic events. In this context, we propose a distributed user-centric risk-aware resource management framework in UAV-assisted PSNs supported by both a static UAV and a mobile UAV. The mobile UAV is entitled to a larger portion of the available spectrum due to its capability and flexibility to re-position itself, and therefore establish better communication channel conditions to the users, compared to the static UAV. However, the potential over-exploitation of the mobile UAV-based communication by the users may lead to the mobile UAV’s failure to serve the users due to the increased levels of interference, consequently introducing risk in the user decisions. To capture this uncertainty, we follow the principles of Prospect Theory and design a user’s prospect-theoretic utility function that reflects user’s risk-aware behavior regarding its transmission power investment to the static and/or mobile UAV-based communication option. A non-cooperative game among the users is formulated, where each user determines its power investment strategy to the two available communication choices in order to maximize its expected prospect-theoretic utility. The existence and uniqueness of a Pure Nash Equilibrium (PNE) is proven and the convergence of the users’ strategies to it is shown. An iterative distributed and low-complexity algorithm is introduced to determine the PNE. The performance of the proposed user-centric risk-aware resource management framework in terms of users’ achievable data rate and spectrum utilization, is achieved via modeling and simulation. Furthermore, its superiority and benefits are demonstrated, by comparing its performance against other existing approaches with regards to UAV selection and spectrum utilization. 
    more » « less
  4. With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller. Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On the other hand, collecting all such information from a large number of users typically incurs a prohibitively high communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling algorithm that is suitable for large-scale IoT applications with limited amount of coordination from the central controller. Specifically, we first characterize a capacity outer bound subject to the sampling constraint where only a small subset of users are allowed to use control channels for system state reporting and wireless channel probing. Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this capacity-achieving algorithm allow us to develop an efficient and low-overhead scheduling algorithm that can strictly satisfy the sampling constraint with asymptotically diminishing throughput loss. Moreover, the throughput performance of our proposed algorithm is independent of the number of users, a highly desirable property in large-scale IoT systems. Finally, we perform extensive simulations to validate our theoretical results. 
    more » « less
  5. With the adoption of 5G wireless technology and the Internet-of-Things (IoT) networking, there is a growing interest in serving a dense population of low-complexity devices over shared wireless uplink channels. Different from the traditional scenario of persistent users, in these new networks each user is expected to generate only small bundles of information intermittently. The highly dynamic nature of such demand and the typically low-complexity nature of the user devices calls for a new MAC paradigm that is geared for low-overhead and distributed operation of dynamic users.In this work, we address this need by developing a generic MAC mechanism for estimating the number and coordinating the activation of dynamic users for efficient utilization of the time-frequency resources with minimal public feedback from the common receiver. We fully characterize the throughput and delay performance of our design under a basic threshold-based multi-channel capacity condition, which allows for the use of different channel utilization schemes. Moreover, we consider the Successive-Interference-Cancellation (SIC) Multi-Channel MAC scheme as a specific choice in order to demonstrate the performance of our design for a spectrally-efficient (albeit idealized) scheme. Under the SIC encoding/decoding scheme, we prove that our low-overhead distributed MAC can support maximum throughput, which establishes the efficiency of our design. Under SIC, we also demonstrate how the basic threshold-based success model can be relaxed to be adapted to the performance of a non-ideal success model. 
    more » « less