Development and Characterization of 12 Novel Polymorphic Microsatellite Loci for the Mammal Chewing Louse Geomydoecus aurei (Insecta: Phthiraptera) and a Comparison of Next-Generation Sequencing Approaches for Use in Parasitology
                        
                    - Award ID(s):
- 1445708
- PAR ID:
- 10072631
- Date Published:
- Journal Name:
- Journal of Parasitology
- Volume:
- 104
- Issue:
- 1
- ISSN:
- 0022-3395
- Page Range / eLocation ID:
- 89 to 95
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Abstract The Cambrian Explosion saw the widespread development of mineralized skeletons. At this time, nearly every major animal phylum independently evolved strategies to build skeletons through either agglutination or biomineralization. Although most organisms settled on a single strategy,SalterellaBillings, 1865 employed both strategies by secreting a biocalcitic exterior shell that is lined with layers of agglutinated sediments surrounding a central hollow tube. The slightly older fossil,VolborthellaSchmidt, 1888, shares a similar construction with agglutinated grains encompassing a central tube but lacks a biomineralized exterior shell. Together these fossils have been grouped in the phylum Agmata Yochelson, 1977, although no phylogenetic relationship has been suggested to link them with the broader metazoan tree, which limits their contribution to our understanding of the evolution of shells in early animals. To understand their ecology and place them in a phylogenetic context, we investigatedSalterellaandVolborthellafossils from the Wood Canyon and Harkless formations of Nevada, USA, the Illtyd Formation of Yukon, Canada, and the Shady Formation of Virginia, USA. Thin-section petrography, acid maceration, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray tomographic microscopy were used to provide new insights into these enigmatic faunas. First, morphological similarities in the aperture divergence angle and ratio of central tube diameter to agglutinated layer thickness suggestSalterellaandVolborthellaare related. Second, both fossils exhibit agglutinated grain compositions that are distinctive from their surrounding environments and demonstrate selectivity on the part of their producers. Finally, the calcitic shell composition and simple layers of blocky prismatic shell microstructure inSalterellasuggest a possible cnidarian affinity. Together these data point to these organisms being sessile, semi-infaunal filter or deposit feeders and an early experimentation in cnidarian biomineralization chronicling a hypothesized transition from an organic sheath inVolborthellato a biomineralized shell inSalterella.more » « less
- 
            Context.In recent times, large organic molecules of exceptional complexity have been found in diverse regions of the interstellar medium. Aims.In this context, we aim to provide accurate frequencies of the ground vibrational state of two key aliphatic aldehydes,n-butanal and its branched-chain isomer, i-butanal, to enable their eventual detection in the interstellar medium. We also want to test the level of complexity that interstellar chemistry can reach in regions of star formation. Methods.We employ a frequency modulation millimeter-wave absorption spectrometer to measure the rotational features ofn- andi-butanal. We analyze the assigned rotational transitions of each rotamer separately using theA-reduced semirigid-rotor Hamiltonian. We use the spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array to search forn- andi-butanal toward the star-forming region Sgr B2(N). We also search for both aldehydes toward the molecular cloud G+0.693−0.027 with IRAM 30 m and Yebes 40 m observations. The observational results are compared with computational results from a recent gas-grain astrochemical model. Results.Several thousand rotational transitions belonging to the lowest-energy conformers of two distinct linear and branched isomers have been assigned in the laboratory spectra up to 325 GHz. A precise set of the relevant rotational spectroscopic constants has been determined for each structure as a first step toward identifying both molecules in the interstellar medium. We report non-detections ofn-and i-butanal toward both sources, Sgr B2(N1S) and G+0.693-0.027. We find thatn- andi-butanal are at least 2-6 and 6-18 times less abundant than acetaldehyde toward Sgr B2(N1S), respectively, and thatn-butanal is at least 63 times less abundant than acetaldehyde toward G+0.693−0.027. While propanal is not detected toward Sgr B2(N1S) either, with an abundance at least 5–11 lower than that of acetaldehyde, propanal is found to be 7 times less abundant than acetaldehyde in G+0.693−0.027. Comparison with astrochemical models indicates good agreement between observed and simulated abundances (where available). Grain-surface chemistry appears sufficient to reproduce aldehyde ratios in G+0.693−0.027; gas-phase production may play a more active role in Sgr B2(N1S). Model estimates for the larger aldehydes indicate that the observed upper limits may be close to the underlying values. Conclusions.Our astronomical results indicate that the family of interstellar aldehydes in the Galactic center region is characterized by a drop of one order of magnitude in abundance at each incrementation in the level of molecular complexity.more » « less
- 
            Hudson, André O (Ed.)ABSTRACT The fungal genusNeonectriacontains many phytopathogenic species currently impacting forests and fruit trees worldwide. Despite their importance, a majority ofNeonectriaspp. lack sufficient genomic resources to resolve suspected cryptic species. Here, we report draft genomes and assemblies forNeonectria magnoliaeNRRL 64651 andNeonectria puniceaNRRL 64653.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    