The adoption of big data analytics in healthcare applications is overwhelming not only because of the huge volume of data being analyzed, but also because of the heterogeneity and sensitivity of the data. Effective and efficient analysis and visualization of secure patient health records are needed to e.g., find new trends in disease management, determining risk factors for diseases, and personalized medicine. In this paper, we propose a novel community cloud architecture to help clinicians and researchers to have easy/increased accessibility to data sets from multiple sources, while also ensuring security compliance of data providers is not compromised. Our cloud-based system design configuration with cloudlet principles ensures application performance has high-speed processing, and data analytics is sufficiently scalable while adhering to security standards (e.g., HIPAA, NIST). Through a case study, we show how our community cloud architecture can be implemented along with best practices in an ophthalmology case study which includes health big data (i.e., Health Facts database, I2B2, Millennium) hosted in a campus cloud infrastructure featuring virtual desktop thin-clients and relevant Data Classification Levels in storage.
A cloud-based secure and privacy-preserving clustering analysis of infectious disease
The early detection of where and when fatal infectious diseases outbreak is of critical importance to the public health. To effectively detect, analyze and then intervene the spread of diseases, people's health status along with their location information should be timely collected. However, the conventional practices are via surveys or field health workers, which are highly costly and pose serious privacy threats to participants. In this paper, we for the first time propose to exploit the ubiquitous cloud services to collect users' multi-dimensional data in a secure and privacy-preserving manner and to enable the analysis of infectious disease. Specifically, we target at the spatial clustering analysis using Kulldorf scan statistic and propose a key-oblivious inner product encryption (KOIPE) mechanism to ensure that the untrusted entity only obtains the statistic instead of individual's data. Furthermore, we design an anonymous and sybil-resilient approach to protect the data collection process from double registration attacks and meanwhile preserve participant's privacy against untrusted cloud servers. A rigorous and comprehensive security analysis is given to validate our design, and we also conduct extensive simulations based on real-life datasets to demonstrate the performance of our scheme in terms of communication and computing overhead.
- Award ID(s):
- 1722791
- Publication Date:
- NSF-PAR ID:
- 10072664
- Journal Name:
- The Second IEEE Symposium on Privacy-Aware Computing (PAC'18)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Benefiting from the advance of Deep Learning technology, IoT devices and systems are becoming more intelligent and multi-functional. They are expected to run various Deep Learning inference tasks with high efficiency and performance. This requirement is challenged by the mismatch between the limited computing capability of edge devices and large-scale Deep Neural Networks. Edge-cloud collaborative systems are then introduced to mitigate this conflict, enabling resource-constrained IoT devices to host arbitrary Deep Learning applications. However, the introduction of third-party clouds can bring potential privacy issues to edge computing. In this paper, we conduct a systematic study about the opportunities of attacking and protecting the privacy of edge-cloud collaborative systems. Our contributions are twofold: (1) we first devise a set of new attacks for an untrusted cloud to recover arbitrary inputs fed into the system, even if the attacker has no access to the edge device’s data or computations, or permissions to query this system. (2) We empirically demonstrate that solutions that add noise fail to defeat our proposed attacks, and then propose two more effective defense methods. This provides insights and guidelines to develop more privacy-preserving collaborative systems and algorithms.
-
As more critical applications move to the cloud, there is a pressing need to provide privacy guarantees for data and computation. While cloud infrastructures are vulnerable to a variety of attacks, in this work, we focus on an attack model where an untrusted cloud operator has physical access to the server and can monitor the signals emerging from the processor socket. Even if data packets are encrypted, the sequence of addresses touched by the program serves as an information side channel. To eliminate this side channel, Oblivious RAM constructs have been investigated for decades, but continue to pose large overheads. In this work, we make the case that ORAM overheads can be significantly reduced by moving some ORAM functionality into the memory system. We first design a secure DIMM (or SDIMM) that uses commodity low-cost memory and an ASIC as a secure buffer chip. We then design two new ORAM protocols that leverage SDIMMs to reduce bandwidth, latency, and energy per ORAM access. In both protocols, each SDIMM is responsible for part of the ORAM tree. Each SDIMM performs a number of ORAM operations that are not visible to the main memory channel. By having many SDIMMs in the system,more »
-
Multi-user oblivious storage allows users to access their shared data on the cloud while retaining access pattern obliviousness and data confidentiality simultaneously. Most secure and efficient oblivious storage systems focus on the utilization of the maximum network bandwidth in serving concurrent accesses via a trusted proxy. How- ever, since the proxy executes a standard ORAM protocol over the network, the performance is capped by the network bandwidth and latency. Moreover, some important features such as access control and security against active adversaries have not been thoroughly explored in such proxy settings. In this paper, we propose MOSE, a multi-user oblivious storage system that is efficient and enjoys from some desirable security properties. Our main idea is to harness a secure enclave, namely Intel SGX, residing on the untrusted storage server to execute proxy logic, thereby, minimizing the network bottleneck of proxy-based designs. In this regard, we address various technical design challenges such as memory constraints, side-channel attacks and scalability issues when enabling proxy logic in the secure enclave. We present a formal security model and analysis for secure enclave multi-user ORAM with access control. We optimize MOSE to boost its throughput in serving concurrent requests. We implemented MOSE and evaluatedmore »
-
Background Human movement is one of the forces that drive the spatial spread of infectious diseases. To date, reducing and tracking human movement during the COVID-19 pandemic has proven effective in limiting the spread of the virus. Existing methods for monitoring and modeling the spatial spread of infectious diseases rely on various data sources as proxies of human movement, such as airline travel data, mobile phone data, and banknote tracking. However, intrinsic limitations of these data sources prevent us from systematic monitoring and analyses of human movement on different spatial scales (from local to global). Objective Big data from social media such as geotagged tweets have been widely used in human mobility studies, yet more research is needed to validate the capabilities and limitations of using such data for studying human movement at different geographic scales (eg, from local to global) in the context of global infectious disease transmission. This study aims to develop a novel data-driven public health approach using big data from Twitter coupled with other human mobility data sources and artificial intelligence to monitor and analyze human movement at different spatial scales (from global to regional to local). Methods We will first develop a database with optimizedmore »