skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Attacking and Protecting Data Privacy in Edge-Cloud Collaborative Inference Systems
Benefiting from the advance of Deep Learning technology, IoT devices and systems are becoming more intelligent and multi-functional. They are expected to run various Deep Learning inference tasks with high efficiency and performance. This requirement is challenged by the mismatch between the limited computing capability of edge devices and large-scale Deep Neural Networks. Edge-cloud collaborative systems are then introduced to mitigate this conflict, enabling resource-constrained IoT devices to host arbitrary Deep Learning applications. However, the introduction of third-party clouds can bring potential privacy issues to edge computing. In this paper, we conduct a systematic study about the opportunities of attacking and protecting the privacy of edge-cloud collaborative systems. Our contributions are twofold: (1) we first devise a set of new attacks for an untrusted cloud to recover arbitrary inputs fed into the system, even if the attacker has no access to the edge device’s data or computations, or permissions to query this system. (2) We empirically demonstrate that solutions that add noise fail to defeat our proposed attacks, and then propose two more effective defense methods. This provides insights and guidelines to develop more privacy-preserving collaborative systems and algorithms.  more » « less
Award ID(s):
1814190
PAR ID:
10208166
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Internet of Things Journal
ISSN:
2372-2541
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The prevalence of deep learning has drawn attention to the privacy protection of sensitive data. Various privacy threats have been presented, where an adversary can steal model owners' private data. Meanwhile, countermeasures have also been introduced to achieve privacy-preserving deep learning. However, most studies only focused on data privacy during training, and ignored privacy during inference. In this paper, we devise a new set of attacks to compromise the inference data privacy in collaborative deep learning systems. Specifically, when a deep neural network and the corresponding inference task are split and distributed to different participants, one malicious participant can accurately recover an arbitrary input fed into this system, even if he has no access to other participants' data or computations, or to prediction APIs to query this system. We evaluate our attacks under different settings, models and datasets, to show their effectiveness and generalization. We also study the characteristics of deep learning models that make them susceptible to such inference privacy threats. This provides insights and guidelines to develop more privacy-preserving collaborative systems and algorithms. 
    more » « less
  2. Internet of Things (IoT) devices have increased drastically in complexity and prevalence within the last decade. Alongside the proliferation of IoT devices and applications, attacks targeting them have gained popularity. Recent large-scale attacks such as Mirai and VPNFilter highlight the lack of comprehensive defenses for IoT devices. Existing security solutions are inadequate against skilled adversaries with sophisticated and stealthy attacks against IoT devices. Powerful provenance-based intrusion detection systems have been successfully deployed in resource-rich servers and desktops to identify advanced stealthy attacks. However, IoT devices lack the memory, storage, and computing resources to directly apply these provenance analysis techniques on the device. This paper presents ProvIoT, a novel federated edge-cloud security framework that enables on-device syscall-level behavioral anomaly detection in IoT devices. ProvIoT applies federated learning techniques to overcome data and privacy limitations while minimizing network overhead. Infrequent on-device training of the local model requires less than 10% CPU overhead; syncing with the global models requires sending and receiving 2MB over the network. During normal offline operation, ProvIoT periodically incurs less than 10% CPU overhead and less than 65MB memory usage for data summarization and anomaly detection. Our evaluation shows that ProvIoT detects fileless malware and stealthy APT attacks with an average F1 score of 0.97 in heterogeneous real-world IoT applications. ProvIoT is a step towards extending provenance analysis to resource-constrained IoT devices, beginning with well-resourced IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU. 
    more » « less
  3. As we enter the Internet of Things (IoT) era, the size of mobile computing devices is largely reduced while their computing capability is dramatically improved. Meanwhile, machine learning technologies have been well developed and shown cutting edge performance in various tasks, leading to their wide adoption. As a result, moving machine learning, especially deep learning capability to the edge of the IoT is a trend happening today. But directly moving machine learning algorithms which originally run on PC platform is not feasible for IoT devices due to their relatively limited computing power. In this paper, we first reviewed several representative approaches for enabling deep learning on mobile/IoT devices. Then we evaluated the performance and impact of these methods on IoT platform equipped with integrated GPU and ARM processor. Our results show that we can enable the deep learning capability on the edge of the IoT if we apply these approaches in an efficient manner. 
    more » « less
  4. Remote health monitoring is a powerful tool to provide preventive care and early intervention for populations-at-risk. Such monitoring systems are becoming available nowadays due to recent advancements in Internet-of-Things (IoT) paradigms, enabling ubiquitous monitoring. These systems require a high level of quality in attributes such as availability and accuracy due to patients critical conditions in the monitoring. Deep learning methods are very promising in such health applications to obtain a satisfactory performance, where a considerable amount of data is available. These methods are perfectly positioned in the cloud servers in a centralized cloud-based IoT system. However, the response time and availability of these systems highly depend on the quality of Internet connection. On the other hand, smart gateway devices are unable to implement deep learning methods (such as training models) due to their limited computational capacities. In our previous work, we proposed a hierarchical computing architecture (HiCH), where both edge and cloud computing resources were efficiently exploited, allocating heavy tasks of a conventional machine learning method to the cloud servers and outsourcing the hypothesis function to the edge. Due to this local decision making, the availability of the system was highly improved. In this paper, we investigate the feasibility of deploying the Convolutional Neural Network (CNN) based classification model as an example of deep learning methods in this architecture. Therefore, the system benefits from the features of the HiCH and the CNN, ensuring a high-level availability and accuracy. We demonstrate a real-time health monitoring for a case study on ECG classifications and evaluate the performance of the system in terms of response time and accuracy. 
    more » « less
  5. Pervasive IoT applications enable us to perceive, analyze, control, and optimize the traditional physical systems. Recently, security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk. Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications. As an extension of the cloud, the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications. Although there are some research efforts in this area, edge-based security designs for IoT applications are still in its infancy. This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs. We first present an edge-centric IoT architecture. Then, we extensively review the edge-based IoT security research efforts in the context of security architecture designs, firewalls, intrusion detection systems, authentication and authorization protocols, and privacy-preserving mechanisms. Finally, we propose our insight into future research directions and open research issues. 
    more » « less