skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon‐Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage
Abstract Single atoms of select transition metals supported on carbon substrates have emerged as a unique system for electrocatalysis because of maximal atom utilization (≈100%) and high efficiency for a range of reactions involved in electrochemical energy conversion and storage, such as the oxygen reduction, oxygen evolution, hydrogen evolution, and CO2reduction reactions. Herein, the leading strategies for the preparation of single atom catalysts are summarized, and the electrocatalytic performance of the resulting samples for the various reactions is discussed. In general, the carbon substrate not only provides a stabilizing matrix for the metal atoms, but also impacts the electronic density of the metal atoms due to strong interfacial interactions, which may lead to the formation of additional active sites by the adjacent carbon atoms and hence enhanced electrocatalytic activity. This necessitates a detailed understanding of the material structures at the atomic level, a critical step in the construction of a relevant structural model for theoretical simulations and calculations. Finally, a perspective is included highlighting the promises and challenges for the future development of carbon‐supported single atom catalysts in electrocatalysis.  more » « less
Award ID(s):
1710408
PAR ID:
10072764
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
48
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atomically dispersed metal catalysts have demonstrated superb electrocatalytic activity because of optimal atom efficiency. However, a rational design of low-cost, high-performance single atom catalysts remains a great challenge due to the elusive chemical reactions of the formation of metal active sites. In this work, biomass hydrogel is prepared as a template for mass production of three-dimensional carbon aerogel-supported single metal atom catalysts. By tailoring the structure of the hydrogel templates, the obtained carbon aerogels exhibit an increase of microporous defects which capture and stabilize isolated metal atoms and minimize aggregation during pyrolysis. Extended X-ray absorption fine structure, Mössbauer spectroscopy, and nitrogen adsorption–desorption isotherm measurements indicate that single metal centers of FeN 4 are formed and embedded within the hierarchical porous carbon frameworks. The obtained composites exhibit outstanding catalytic activity towards oxygen reduction in alkaline media, with a high onset potential of +1.05 V and half-wave potential of +0.88 V, as well as excellent durability. Remarkably, when the carbon aerogels are used as the cathode catalyst in an aluminum–air battery, the battery achieves an ultrahigh open-circuit voltage of 1.81 V, large power density of 181.1 mW cm −2 and stable discharge voltage of 1.70 V at 20 mA cm −2 , markedly better than those with commercial Pt/C as the cathode catalyst. 
    more » « less
  2. Abstract The development of low‐cost and efficient electrocatalysts for nitrogen reduction reaction (NRR) at ambient conditions is crucial for NH3synthesis and provides an alternative to the traditional Harber‐Bosch process. Herein, by means of density functional theory (DFT) computations, the catalytic performance of a series of single metal atoms supported on graphitic carbon nitride (g‐C3N4) for NRR is evaluated. Among all the candidates, the Gibbs free energy change of the potential‐determining step for five single‐atom catalysts (SACs), namely Ti, Co, Mo, W, and Pt atoms supported on g‐C3N4monolayer, is lower than that on the Ru(0001) stepped surface. In particular, the single tungsten (W) atom anchored on g‐C3N4(W@g‐C3N4) exhibits the highest catalytic activity toward NRR with a limiting potential of −0.35 V via associative enzymatic pathway, and can well suppress the competing hydrogen evolution reaction. The high NRR activity and selectivity of W@g‐C3N4are attributed to its inherent properties, such as significant positive charge and large spin moment on the W atom, excellent electrical conductivity, and moderate adsorption strength with NRR intermediates. This work opens up a new avenue of N2reduction for renewable energy supplies and helps guide future development of single‐atom catalysts for NRR and other related electrochemical process. 
    more » « less
  3. Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are three critical reactions for energy-related applications, such as water electrolyzers and metal-air batteries. Graphene-supported single-atom catalysts (SACs) have been widely explored; however, either experiments or density functional theory (DFT) computations cannot screen catalysts at high speed. Herein, based on DFT computations of 104 graphene-supported SACs (M@C3, M@C4, M@pyridine-N4, and M@pyrrole-N4), we built up machine learning (ML) models to describe the underlying pattern of easily obtainable physical properties and limiting potentials (errors = 0.013/0.005/0.020 V for ORR/OER/HER, respectively), and employed these models to predict the catalysis performance of 260 other graphene-supported SACs containing metal-NxCy active sites (M@NxCy). We recomputed the top catalysts recommended by ML towards ORR/OER/HER by DFT, which confirmed the reliability of our ML model, and identified two OER catalysts (Ir@pyridine-N3C1 and Ir@pyridine-N2C2) outperforming noble metal oxides, RuO2 and IrO2. The ML models quantitatively unveiled the significance of various descriptors and fast narrowed down the potential list of graphene-supported single-atom catalysts. This approach can be easily used to screen and design other SACs, and significantly accelerate the catalyst design for many other important reactions. 
    more » « less
  4. Abstract Single‐atom catalysts (SACs) have been attracting extensive interest in the electrocatalytic production of hydrogen peroxide by oxygen reduction reaction (ORR). This is due to the maximal efficiency of atom utilization and intimate interaction of the metal centers with the supporting matrix that may be exploited for deliberate manipulation of the electrocatalytic activity and selectivity, in comparison with the conventional nanoparticle counterparts. Herein, we summarize recent progress of the design and engineering of SACs towards ORR for H2O2generation, based on both noble and non‐noble metals. We conclude the review with a perspective highlighting the promises and challenges involved in future research. 
    more » « less
  5. Rational design of single-metal atom sites in carbon substrates by a flexible strategy is highly desired for the preparation of high-performance catalysts for metal-air batteries. In this study, biomass hydrogel reactors are utilized as structural templates to prepare carbon aerogels embedded with single iron atoms by controlled pyrolysis. The tortuous and interlaced hydrogel chains lead to the formation of abundant nanowrinkles in the porous carbon aerogels, and single iron atoms are dispersed and stabilized within the defective carbon skeletons. X-ray absorption spectroscopy measurements indicate that the iron centers are mostly involved in the coordination structure of FeN 4 , with a minor fraction (ca. 1/5) in the form of FeN 3 C. First-principles calculations show that the FeN x sites in the Stone-Wales configurations induced by the nanowrinkles of the hierarchically porous carbon aerogels show a much lower free energy than the normal counterparts. The resulting iron and nitrogen-codoped carbon aerogels exhibit excellent and reversible oxygen electrocatalytic activity, and can be used as bifunctional cathode catalysts in rechargeable Zn-air batteries, with a performance even better than that based on commercial Pt/C and RuO 2 catalysts. Results from this study highlight the significance of structural distortions of the metal sites in carbon matrices in the design and engineering of highly active single-atom catalysts. 
    more » « less