skip to main content


Title: Undergraduate Socialization in Engineering: The Role of Institutional Tactics and Proactive Behaviors
Higher education literature is replete with evidence that socioeconomic variables and background characteristics inform a myriad of factors related to students’ college life. These include the institutions students choose to attend, their experiences after matriculation, differences in success rates, and even post-graduation outcomes. This is particularly true in engineering, where gaps in academic performance, persistence, and degree attainment still endure despite the litany of federal, institutional, and unit-level resources designed to address socioeconomic disparities. In contrast to much of the literature that takes a deficit-based approach, in this work we presuppose that it is not simply differences in socioeconomic variables and background characteristics that separates highly engaged, successful students in engineering from their less engaged, unsuccessful counterparts. Rather, we suggest that an underlying set of socialization processes by which students become familiar with collegiate engineering education makes students more or less likely to engage in activities that are associated with success. We posit that students’ experiences with these socialization processes – institutional socialization tactics and proactive behaviors – may better explain patterns of participation and outcomes in engineering that go beyond the consideration of access to academic and social resources. Drawing on Weidman’s Undergraduate Socialization framework, we developed a conceptual model for understanding the socialization processes that inform engineering students’ participation in co-curricular activities (specifically professional engineering societies and student design teams). This model is guided by three hypotheses. First, we hypothesize that socioeconomic, academic, and demographic background characteristics combine to uniquely inform students’ experiences with two socialization processes – institutional tactics and proactive behaviors. This, in turn, informs their participation in co-curricular activities, such as professional engineering societies and student design teams. Finally, students who participate in co-curricular engineering activities have different academic and social outcomes than their counterparts who do not participate in co-curricular engineering activities. We also developed a survey instrument based on this model to understand how various socioeconomic variables and background characteristics inform students’ socialization processes and, as a result, their outcomes in engineering. Our goal is to understand the factors that shape students’ socialization into engineering, as well as their development into engineers. Ultimately, our goal is to narrow gaps in participation and success in engineering by addressing negative socialization experiences.  more » « less
Award ID(s):
1640417
NSF-PAR ID:
10072811
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building on prior studies that show a sense of belonging and community bolster student success, we developed a pilot program for computer engineering (CpE) and computer science (CS) undergraduates and their families that focused on building a sense of belonging and community supported by co-curricular and socioeconomic scaffolding. As a dually designated Hispanic-Serving Institution (HSI) and Asian American and Native American Pacific Islander-Serving Institution (AANAPISI) – two types of federally designated Minority-Serving Institutions (MSI) – with 55% of our undergraduates being first-generation students, we aimed to demonstrate the importance of these principles for underrepresented and first-generation students. Using a student cohort model (for each incoming group of students) and also providing supports to build community across cohorts as well as including students’ families in their college experiences, our program aimed to increase student satisfaction and academic success. We recruited two cohorts of nine incoming students each across two years, 2019 and 2020; 69% of participants were from underrepresented racial or minority groups and 33% were women. Each participant was awarded an annual scholarship and given co-curricular support including peer and faculty mentoring, a dedicated cohort space for studying and gathering, monthly co-curricular activities, enhanced tutoring, and summer bridge and orientation programs. Students’ families were also included in the orientation and semi-annual meetings. The program has resulted in students exceeding the retention rates of their comparison groups, which were undergraduates majoring in CpE and CS who entered college in the same semester as the cohorts; first- and second-year retention rates for participants were 83% (compared to 72%) and 67% (compared to 57%). The GPAs of participants were 0.35 points higher on average than the comparison group and, most notably, participants completed 50% more credits than their comparison groups, on average. In addition, 9 of the 18 scholars (all of the students who wanted to participate) engaged in summer research or internships. In combination, the cohort building, inclusion of families, financial literacy education and support, and formal and informal peer and faculty mentoring have correlated with increased academic success. The cohorts are finishing their programs in Spring 2023 and Spring 2024, but data up to this point already show increases in GPA, course completion, and retention and graduation rates, with three students having already graduated early, within three and a half years. The findings from this study are now being used to expand the successful parts of the program and inform university initiatives, with the PI serving on campus-wide STEM pipeline committee aiming to recruit, retain, and support more STEM students at the institution. 
    more » « less
  2. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering. 
    more » « less
  3. The Guided Pathways initiative is among many reform efforts that have been implemented by hundreds of community colleges in the country. Four main practice areas are intrinsic of Guided Pathways: 1) mapping pathways to students’ end goals, 2) helping students choose and enter a program pathway, 3) keeping students on a path, and 4) ensuring that students are learning. Although this approach is an important step toward successful transfer placement, the Guided Pathways do not address the visible and invisible barriers to student success once students transfer to a 4-year institution. This paper presents a novel and holistic approach to transfer that eliminates visible and invisible barriers to student success. The Holistic and Programmatic Approach for Transfer (HPAT) model includes early and active participation of the 4-year transfer partner, structured within a well-thought-out transfer articulation agreement that builds on a joint commitment to quality and student success. Integral to the agreement is the requirement for the rigor of the curriculum at the community college to match that of the 4-year partner, along with exceptional student support, financial assistance, and mentoring from the point of admission at the community college, through transfer and up to the bachelor's or master's degree completion. Unique to this model is the fully collaborative and holistic approach to admission; curriculum alignment, including content; participation in co-curricular activities; co-advising; co-mentoring; and data sharing that drive continuous improvement. Students in the program are concurrently registered in both the community college and the 4-year partner institution, becoming part of both student communities from the start. These students take classes at the 4-year partner at a discounted price while still enrolled at the community college, thus eliminating curricular barriers, ensuring placement as juniors, and facilitating belonging at the transfer institution. In addition, program-specific courses and activities at the transfer institution aim to eliminate the socialization and adjustment barrier upon transfer, further increasing belongingness to both institutions. Preliminary outcomes promise a ninety-five percent (95%) transfer rate within 2-3 years from admission. The Program's success is attributed to a holistic and programmatic approach for transfer that emphasizes cross-institutional commitment, effective mentoring, rigor, quality, and increases in the engineering profession (measured through a belonging survey and "Appreciative Inquiry" case study interviews). Although this approach is Engineering specific, our model is positioned to revolutionize transfer that can be duplicated for other Science, Technology, Engineering, and Math (STEM) and non-STEM disciplines. 
    more » « less
  4. Co-curricular team projects in engineering – like design projects, experimental assignments, or national project-based competitions or challenges – can be key experiences for students in forming personal and professional skills and traits. Little concrete data is available about why students choose to participate or not participate in such activities though, and how their participation and perceptions of the activities may be influenced by factors such as their gender identity, race/ethnicity, and other facets of themselves and their experiences. Without this data, it is difficult to conceive of strategies to improve participation in certain activities among groups of people who are otherwise under-represented compared even to their representation at the College level. The research was devised to gather insight into why students chose to participate or not participate, and what they felt the benefits and detrimental effects of participation were. The pilot study was conducted at the Cal Poly San Luis Obispo campus, which is part of the California State University system - it has a student cohort that is not particularly diverse compared to the rest of the system or highly representative of state demographics, and it has an institutional focus on applied, hands- on learning that means that a high number of students participate in co-curricular engineering projects. A 70 question survey tool, adapted from an existing tool, garnered responses from nearly 500 students, with demographic and identity questions preceding sections about factors that led to participation or non- participation, and then perceptions of positive and negative outcomes that can come from involvement in co-curricular engineering projects. 
    more » « less
  5. In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts—they must also be technical leaders. Greater numbers of engineering educators are recognizing this need and establishing engineering leadership certificates and minors through centers at universities throughout the country. While the implementation of these offerings is a step forward, most programs tend to focus on leadership as a set of skills or experiences bolted onto a traditional engineering education with limited formal evidence of the impact these experiences have on student development. The purpose of this study is to test the effect of experiences engineering students have in leadership roles on their perceived gains in leadership skills, using a national dataset. The framework guiding this study is a model for engineering leadership identity constructed from Lave and Wenger’s communities of practice model and Komives et al.’s model for leadership identity development (LID) which recognizes that the engineering formation process is, at its core, an identity development process. Engineering leadership is theorized to develop from peripheral participation in engineering communities of practice in ways that promote students’ leadership development. Specifically, undertaking leadership roles in curricular and co-curricular engineering activities develops students’ sense of engineering leadership identity, which results in their recognition of gains in different leadership skills. The data for this study come from the 2015 administration of the National Survey of Student Engagement (NSSE), overseen by the Center for Postsecondary Research at Indiana University. The NSSE is administered to a random sample of first- and fourth-year students, and focuses on curricular and co-curricular student engagement. In 2015, NSSE included a pilot module to assess leadership experiences at 21 participating institutions. The overall sample includes 2607 students who held a leadership role, among whom are 90 engineering students. The dependent variables for this study are a set of eight items prompting students to indicate the extent to which participation in a leadership role contributed to development of different leadership skills. This study employs multiple regression to test the relationships among leadership related experiences and eight leadership skill outcomes for engineering students. Significant results across the eight regression models paint a complex portrait regarding factors that affect gains in leadership skills for engineering students. For example, receiving formal leadership training is a significant positive predictor of only three of the leadership outcomes explored in this work: thinking critically and analytically, working effectively with others, and continuing leadership after college. These results can be utilized by educators engaged in Engineering Leadership education to tailor their program experiences and better achieve the desired educational outcomes. 
    more » « less