skip to main content


Title: Changing resource landscapes and spillover of henipaviruses: Resource landscapes and henipavirus spillover
Award ID(s):
1716698
NSF-PAR ID:
10072927
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Annals of the New York Academy of Sciences
Volume:
1429
Issue:
1
ISSN:
0077-8923
Page Range / eLocation ID:
78 to 99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human activity continues to impact global ecosystems, often by altering the habitat suitability, persistence, and movement of native species. It is thus critical to examine the population genetic structure of key ecosystemservice providers across human‐altered landscapes to provide insight into the forces that limit wildlife persistence and movement across multiple spatial scales. While some studies have documented declines of bee pollinators as a result of human‐mediated habitat alteration, others suggest that some bee species may benefit from altered land use due to increased food or nesting resource availability; however, detailed population and dispersal studies have been lacking. We investigated the population genetic structure of the Eastern carpenter bee,Xylocopa virginica,across 14 sites spanning more than 450 km, including dense urban areas and intensive agricultural habitat.X. virginicais a large bee which constructs nests in natural and human‐associated wooden substrates, and is hypothesized to disperse broadly across urbanizing areas. Using 10 microsatellite loci, we detected significant genetic isolation by geographic distance and significant isolation by land use, where urban and cultivated landscapes were most conducive to gene flow. This is one of the first population genetic analyses to provide evidence of enhanced insect dispersal in human‐altered areas as compared to semi‐natural landscapes. We found moderate levels of regional‐scale population structure across the study system (GʹST = 0.146) and substantial co‐ancestry between the sampling regions, where co‐ancestry patterns align with major human transportation corridors, suggesting that human‐mediated movement may be influencing regional dispersal processes. Additionally, we found a signature of strong site‐level philopatry where our analyses revealed significant levels of high genetic relatedness at very fine scales (<1 km), surprising givenX. virginica'slarge body size. These results provide unique genetic evidence that insects can simultaneously exhibit substantial regional dispersal as well as high local nesting fidelity in landscapes dominated by human activity.

     
    more » « less
  2. Abstract Marine Protected Areas (MPAs) are designed to enhance biodiversity and ecosystem services. Some MPAs are also established to benefit fisheries through increased egg and larval production, or the spillover of mobile juveniles and adults. Whether spillover influences fishery landings depend on the population status and movement patterns of target species both inside and outside of MPAs, as well as the status of the fishery and behavior of the fleet. We tested whether an increase in the lobster population inside two newly established MPAs influenced local catch, fishing effort, and catch-per-unit-effort (CPUE) within the sustainable California spiny lobster fishery. We found greater build-up of lobsters within MPAs relative to unprotected areas, and greater increases in fishing effort and total lobster catch, but not CPUE, in fishing zones containing MPAs vs. those without MPAs. Our results show that a 35% reduction in fishing area resulting from MPA designation was compensated for by a 225% increase in total catch after 6-years, thus indicating at a local scale that the trade-off of fishing ground for no-fishing zones benefitted the fishery. 
    more » « less