skip to main content


Title: AC and DC Electrical properties of Graphene Nanoplatelets Reinforced Epoxy Syntactic Foam
Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior.  more » « less
Award ID(s):
1736136
NSF-PAR ID:
10072939
Author(s) / Creator(s):
Date Published:
Journal Name:
Materials research express
Volume:
5
Issue:
045605
ISSN:
2053-1591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The composite sandwich structures with foam core and fiber-reinforced polymer skin are prone to damage under local impact. The mechanical behavior of sandwich panels (glass fiber-reinforced polymer [GFRP] skin reinforced with lattice webs and syntactic foams core) is studied under crushing load. The crushing behavior, failure modes, and energy absorption are correlated with the number of GFRP layers in facesheets and webs, fiber volume fractions of facesheets in both longitudinal and transverse directions, and density and thickness of syntactic foam. The test results revealed that increasing the number of FRP layers of lattice webs was an effective way to enhance the energy absorption of sandwich panels without remarkable increase in the peak load. Moreover, a three-dimensional finite-element (FE) model was developed to simulate the mechanical behavior of the syntactic foam sandwich panels, and the numerical results were compared with the experimental results. Then, the verified FE model was applied to conduct extensive parametric studies. Finally, based on experimental and numerical results, the optimal design of syntactic foam sandwich structures as energy absorption members was obtained. This study provides theoretical basis and design reference of a novel syntactic foam sandwich structure for applications in bridge decks, ship decks, carriages, airframes, wall panels, anticollision guard rails and bumpers, and railway sleepers. 
    more » « less
  2. null (Ed.)
    Carbon fiber (CF)-reinforced thermoplastic composites have been widely used in different structural applications due to their superior thermal and mechanical properties. The big area additive manufacturing (BAAM) system, developed at Oak Ridge National Laboratory’s Manufacturing Demonstration Facility, has been used to manufacture several composite components, demonstration vehicles, molds, and dies. These components have been designed and fabricated using various CF-reinforced thermoplastics. In this study, the dynamic rheological and mechanical properties of a material commonly used in additive manufacturing, 20 wt% CF-acrylonitrile butadiene styrene (ABS), as well as three CF-reinforced high-temperature polymers, 25 wt% CF-polyphenylsulfone (PPSU), 35 wt% CF-polyethersulfone (PES), and 40 wt% CF-polyphenylene sulfide (PPS), used to print molds were investigated. The viscoelastic properties, namely storage modulus, loss modulus, tan delta, and complex viscosity, of these composites were studied, and the rheological behavior was related to the BAAM extrusion and bead formation process. The results showed 20 wt% CF-ABS and 40 wt% CF-PPS to display a more dominant elastic component at all frequencies tested while 25 wt% CF-PPSU and 35 wt% CF-PES have a more dominant viscous component. This viscoelastic behavior is then used to inform the deposition and bead formation process during extrusion on the BAAM system. 
    more » « less
  3. ABSTRACT

    A series of 16‐layer polypropylene/flame retardant (PP/FR) film/foam composite structures were produced by microlayer coextrusion. A highly branched PP was used in the foam layers to increase strain hardening and cell stability, while the PP used in the film layers was a high shear viscosity grade to confine bubble growth. In addition to improved tensile properties, the PP/FR composite film/foams exhibited five times the compression modulus of PP/FR composite foams at each FR loading level. The thermal stabilities of the composites were investigated, exhibiting three step decompositions. The FR particles were effective in decreasing flammability by forming intumescent char. The PP/FR‐film/foam‐20 showed self‐extinguishing behavior in a modified vertical burn test, while the PP/FR‐foam‐20 sample continued to burn. Cone calorimetry demonstrated that PP/FR film/foams had lower heat release than PP/FR foams due to the unique alternating film/foam structure of PP/FR film/foams. Scanning electron microscopy imaging of the residual chars from fire testing that the PP/FR composite film/foams showed a more continuous protective char surface when compared with PP/FR composite foams at each FR concentration. The combined data indicate that the formation of a surface film on top of a foam ensures a robust intumescent fire protective barrier for partly foamed materials and shows a new way toward lightweight materials with improved fire safety performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2020,137, 48552.

     
    more » « less
  4. Abstract

    Hybrid nanocellulose-based foams are a desirable class of low-density and porous materials for their potential in many applications. This study aims at characterizing and understanding the structure-properties relationship of four foam formulations prepared from combinations of cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and kaolin-microfibrillated cellulose composite. All the foams were crosslinked with a polyamide-epichlorohydrin crosslinker (Polycup) to impart stability under wet conditions without additional functionalization. Foams containing 25 wt% kaolin exhibited excellent shape recovery promoted by a higher load of crosslinker (5 wt%), and superior compressive properties. The addition of CNC at 33.3 wt% and 50 wt% did not seem to enhance the properties of the foam and also reduced the specific surface area. A preliminary comparative study between the four tested formulations was conducted to assess the feasibility of the foam as an adsorbent of methylene blue dye.

     
    more » « less
  5. Abstract

    Hydraulic fracturing of oil and gas wells is a water intensive process. Limited availability, cost and increasing government regulations restraining the use and disposal of fresh water have led to the need for alternative fracturing fluids. Using CO2 foam as a fracturing fluid can drastically reduce the need for water in hydraulic fracturing. We address the addition of polyelectrolyte complex nanoparticles (PECNP) to surfactant solutions to improve foam stability, durability and rheological properties at high foam qualities. Polyelectrolyte pH and polyanion/polycation ratios were varied to minimize particle size and maximize absolute zeta potential of the resulting nanoparticles. Rheological tests were conducted on foam systems of varying surfactant/PECNP ratios and different foam quality to understand the effect of shear on viscosity under simulated reservoir conditions of 40°C and 1300 psi. The same foam systems were tested for stability and durability in a view cell at reservoir conditions. Supercritical CO2 foam generated by surfactant alone resulted in short lived, low viscosity foam because of surfactant drainage from foam lamellae. However, addition of PECNP strengthens the foam film by swelling the film due to increased osmotic pressure and electrostatic forces. Electrostatic interactions reduce dynamic movement of surfactant micelles, thereby stabilizing the foam lamellae, which imparts high durability and viscosity to supercritical CO2 foams. From the rheology test results, it was concluded that increasing foam quality and the presence of PECNP resulted in improved viscosity. Also, foam systems with PECNP showed promising results compared with foam generated using surfactant alone in the view cell durability test. The addition of optimized polyelectrolyte nanoparticles to the surfactant can improve viscosity and durability of supercritical CO2 foam during hydraulic fracturing, which can lead to large reductions in water requirements.

     
    more » « less