skip to main content

Title: Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (Crotalus oreganus)
Identifying the environmental correlates of divergence in functional traits between populations can provide insights into the evolutionary mechanisms that generate local adaptation. Here, we assess patterns of population differentiation in expressed venom proteins in Northern Pacific rattlesnakes (Crotalus oreganus) from 13 locations across California. We evaluate the relative importance of major biotic (prey species community composition), abiotic (temperature, precipitation, and elevation) and genetic factors (genetic distance based on RADseq loci) as correlates of population divergence in venom phenotypes. We found that over half of the variation in venom composition is associated with among-population differentiation for genetic and environmental variables, and that this variation occurred along axes defining previously observed functional trade-offs between venom proteins that have neurotoxic, myotoxic and hemorrhagic effects. Surprisingly, genetic differentiation among populations was the best predictor of venom divergence, accounting for 46% of overall variation, whereas differences in prey community composition and abiotic factors explained smaller amounts of variation (23% and 19%, respectively). The association between genetic differentiation and venom composition could be due to an isolation-by-distance effect or, more likely, an isolation-by-environment effect where selection against recent migrants is strong, producing a correlation between neutral genetic differentiation and venom differentiation. Our findings suggest that even more » coarse estimates of prey community composition can be useful in understanding the selection pressures acting on patterns of venom protein expression. Additionally, our results suggest that factors other than adaptation to spatial variation in prey need to be considered when explaining population divergence in venom. « less
Award ID(s):
Publication Date:
Journal Name:
Journal of evolutionary biology
Sponsoring Org:
National Science Foundation
More Like this
  1. An important goal of conservation genetics is to determine if the viability of small populations has been compromised by genetic drift leading to loss of adaptive variation. Here, we assessed the impact of drift and selection on direct measures of adaptive variation (toxin loci encoding venom proteins) in the Eastern Massasauga rattlesnake (Sistrurus catenatus), a threatened snake that exists in small populations. We estimated levels of individual polymorphism in 46 toxin loci and 1467 control loci across 12 populations of this species, and compared the results with patterns of selection on the same loci following speciation of S. catenatus and its closest relative, the Western Massasauga (S. tergeminus). Multiple lines of evidence suggest that both drift and selection have had observable impacts on standing adaptive variation. In support of drift effects, we found little evidence for selection on toxin variation within populations and a significant positive relationship between current levels of adaptive variation and long-term and short-term estimates of effective population size. However, we also observed levels of directional selection on toxin loci among populations that are broadly similar to patterns predicted from interspecific selection analyses that predate the effects of recent drift, and that functional variation in these locimore »persists despite small short-term effective sizes. We suggest that much of the adaptive variation present in populations may represent an example of “drift debt,” a non-equilibrium state where present-day measures overestimate the amount of functional genetic diversity that will be present in these populations in the future.« less
  2. The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species’ divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergencemore »in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.

    « less
  3. The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata , to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reefmore »restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.« less
  4. Evolution by natural selection may be effective enough to allow for recurrent, rapid adaptation to distinct niche environments within a well-mixed population. For this to occur, selection must act on standing genetic variation such that mortality i.e. genetic load, is minimized while polymorphism is maintained. Selection on multiple, redundant loci of small effect provides a potentially inexpensive solution. Yet, demonstrating adaptation via redundant, polygenic selection in the wild remains extremely challenging because low per-locus effect sizes and high genetic redundancy severely reduce statistical power. One approach to facilitate identification of loci underlying polygenic selection is to harness natural replicate populations experiencing similar selection pressures that harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus. F. heteroclitus inhabits salt marsh estuaries that are characterized by high environmental heterogeneity e.g. tidal ponds, creeks, coastal basins. Here, we sample four of these heterogeneous niches (one coastal basin and three replicate tidal ponds) at two time points from among a single, panmictic F. heteroclitus population. We identify 10,861 single nucleotide polymorphisms using a genotyping-by-sequencing approach and quantify temporal allele frequency change within, as well as spatial divergence among subpopulations residing in these niches. We findmore »a significantly elevated number of concordant allele frequency changes among all subpopulations, suggesting ecosystem-wide adaptation to a common selection pressure. Remarkably, we also find an unexpected number of temporal allele frequency changes that generate fine-scale divergence among subpopulations, suggestive of local adaptation to distinct niche environments. Both patterns are characterized by a lack of large-effect loci yet an elevated total number of significant loci. Adaptation via redundant, polygenic selection offers a likely explanation for these patterns as well as a potential mechanism for polymorphism maintenance in the F. heteroclitus system.« less
  5. Differences in snake venom composition occur across all taxonomic levels and it has been argued that this variation represents an adaptation that has evolved to facilitate the capture and digestion of prey and evasion of predators. Bothrops atrox is a terrestrial pitviper that is distributed across the Amazon region, where it occupies different habitats. Using statistical analyses and functional assays that incorporate individual variation, we analyzed the individual venom variability in B. atrox snakes from four different habitats (forest, pasture, degraded area, and floodplain) in and around the Amazon River in Brazil. We observed venom differentiation between spatially distinct B. atrox individuals from the different habitats, with venom variation due to both common (high abundance) and rare (low abundance) proteins. Moreover, differences in the composition of the venoms resulted in individual variability in functionality and heterogeneity in the lethality to mammals and birds, particularly among the floodplain snakes. Taken together, the data obtained from individual venoms of B. atrox snakes, captured in different habitats from the Brazilian Amazon, support the hypothesis that the differential distribution of protein isoforms results in functional distinctiveness and the ability of snakes with different venoms to have variable toxic effects on different prey.