Surfaces that exhibit both superhydrophobic and superoleophobic properties have recently been demonstrated. Specifically, remarkable designs based on overhanging/inverse-trapezoidal microstructures enable water droplets to contact these surfaces only at the tips of the micro-pillars, in a state known as the Cassie state. However, the Cassie state may transition into the undesirable Wenzel state under certain conditions. Herein, we show from large-scale molecular dynamics simulations that the transition between the Cassie and Wenzel states can be controlled via precisely designed trapezoidal nanostructures on a surface. Both the base angle of the trapezoids and the intrinsic contact angle of the surface can be exploited to control the transition. For a given base angle, three regimes can be achieved: the Wenzel regime, in which water droplets can exist only in the Wenzel state when the intrinsic contact angle is less than a certain critical value; the Cassie regime, in which water droplets can exist only in the Cassie state when the intrinsic contact angle is greater than another critical value; and the bistable Wenzel–Cassie regime, in which both the Wenzel and Cassie states can exist when the intrinsic contact angle is between the two critical values. A strong base-angle dependence of the first critical value is revealed, whereas the second critical value shows much less dependence on the base angle. The stability of the Cassie state for various base angles (and intrinsic contact angles) is quantitatively evaluated by computing the free-energy barrier for the Cassie-to-Wenzel state transition. 
                        more » 
                        « less   
                    
                            
                            Small degree of anisotropic wetting on self-similar hierarchical wrinkled surfaces
                        
                    
    
            We studied the wetting behavior of multiscale self-similar hierarchical wrinkled surfaces. The hierarchical surface was fabricated on poly(dimethylsiloxane) (PDMS) substrates by manipulating the sequential strain release and combined plasma/ultraviolet ozone (UVO) treatment. The generated structured surface shows an independently controlled dual-scale roughness with level-1 small-wavelength wrinkles (wavelength of 700–1500 nm and amplitude of 50–500 nm) resting on level-2 large-wavelength wrinkles (wavelength of 15–35 μm and amplitude of 3.5–5 μm), as well as accompanying orthogonal cracks. By tuning the aspect ratio of hierarchical wrinkles, the degree of wetting anisotropy in hierarchical wrinkled surfaces, defined as the contact angle difference between the parallel and perpendicular directions to the wrinkle grooves, is found to change between 3° and 9°. Through both experimental characterization (confocal fluorescence imaging) and theoretical analyses, we showed that the wetting state in the hierarchical wrinkled surface is in the Wenzel wetting state. We found that the measured apparent contact angle is larger than the theoretically predicted Wenzel contact angle, which is found to be attributed to the three-phase contact line pinning effect of both wrinkles and cracks that generates energetic barriers during the contact line motion. This is evidenced by the observed sudden drop of over 20° in the static contact angles along both perpendicular and parallel directions after slight vibration perturbation. Finally, we concluded that the observed small degree of wetting anisotropy in the hierarchical wrinkled surfaces mainly arises from the competition between orthogonal wrinkles and cracks in the contact line pinning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1745921
- PAR ID:
- 10073039
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 1517 to 1529
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Understanding protein adsorption behavior on rough and wrinkled surfaces is vital to applications including biosensors and flexible biomedical devices. Despite this, there is a dearth of study on protein interaction with regularly undulating surface topographies, particularly in regions of negative curvature. Here we report nanoscale adsorption behavior of immunoglobulin M (IgM) and immunoglobulin G (IgG) on wrinkled and crumpled surfaces via atomic force microscopy (AFM). Hydrophilic plasma treated poly(dimethylsiloxane) (PDMS) wrinkles with varying dimensions exhibit higher surface coverage of IgM on wrinkle peaks over valleys. Negative curvature in the valleys is determined to reduce protein surface coverage based both on an increase in geometric hindrance on concave surfaces, and reduced binding energy as calculated in coarse-grained molecular dynamics simulations. The smaller IgG molecule in contrast shows no observable effects on coverage from this degree of curvature. The same wrinkles with an overlayer of monolayer graphene show hydrophobic spreading and network formation, and inhomogeneous coverage across wrinkle peaks and valleys attributed to filament wetting and drying effects in the valleys. Additionally, adsorption onto uniaxial buckle delaminated graphene shows that when wrinkle features are on the length scale of the protein diameter, hydrophobic deformation and spreading do not occur and both IgM and IgG molecules retain their dimensions. These results demonstrate that undulating wrinkled surfaces characteristic of flexible substrates can have significant effects on protein surface distribution with potential implications for design of materials for biological applications.more » « less
- 
            Abstract Bacterial biofilms on the surfaces of indwelling biomedical devices can cause long‐term infection and patient morbidity and mortality. Wrinkled surface topographies have previously demonstrated promising antifouling properties. Here we report a bioinspired strategy in which the actuation of silk fibroin produces tunable, wrinkled surface topographies on 2D shape memory polymer (SMP) substrates and investigate the influence of these topographies on biofilm formation. To mimic biofilm‐associated infections related to the geometries of indwelling medical devices, silk wrinkles are produced on complex, 3D SMP architectures, and biofilm formation is evaluated. Using common biofilm‐causing agents, smaller silk wrinkle wavelengths and amplitudes are found to significantly reduce biofilm formation, resulting in primarily isolated, single‐cell bacteria on the 2D wrinkled surfaces. These single‐cell bacteria are nearly completely eradicated by treatment with antibiotics, which are ineffective against control surfaces. Antibiotics are also physically incorporated into the 2D wrinkled surfaces, which resulted in a further significant reduction in bacterial adhesion. Lastly, silk wrinkled topographies are successfully applied on 3D architectures, and the wrinkled surfaces display a significant reduction in biofilm coverage compared to controls. The findings demonstrate the potential for biopolymer wrinkles on biomaterials to be used as antifouling surfaces for biofilm prevention.more » « less
- 
            Abstract Surface wrinkles have emerged as a promising avenue for the development of smart adhesives with dynamically tunable adhesion, finding applications in diverse fields, such as soft robots and medical devices. Despite intensive studies and great achievements, it is still challenging to model and simulate the tunable adhesion with surface wrinkles due to roughened surface topologies and pre-stress inside the materials. The lack of a mechanistic understanding hinders the rational design of these smart adhesives. Here, we integrate a lattice model for nonlinear deformations of solids and nonlocal interaction potentials for adhesion in the framework of molecular dynamics to explore the roles of surface wrinkles on adhesion behaviors. We validate the proposed model by comparing wrinkles in a neo-Hookean bilayer with benchmarked results and reproducing the analytical solution for cylindrical adhesion. We then systematically study the pull-off force of the wrinkled surface with varied compressive strains and adhesion energies. Our results reveal the competing effect between the adhesion-induced contact and the roughness due to wrinkles on enhancing or weakening the adhesion. Such understanding provides guidance for tailoring material and geometry as well as loading wrinkled surfaces for different applications.more » « less
- 
            An electric field applied across the interface has been shown to enable transitions from the Cassie to the Wenzel state on superhydrophobic surfaces with miniature corrugations. Molecular dynamics (MD) simulations manifest the possibility of reversible cycling between the two states when narrow surface wells support spontaneous expulsion of water in the absence of the field. With approximately 1 nm sized wells between the surface asperities, the response times to changes in the electric field are of O(0.1) ns, allowing up to GHz frequency of the cycle. Because of the orientation preferences of interfacial water in contact with the solid, the phenomenon depends on the polarity of the field normal to the interface. The threshold field strength for the Cassie-to-Wenzel transition is significantly lower for the field pointing from the aqueous phase to the surface; however, once in the Wenzel state, the opposite field direction secures tighter filling of the wells. Considerable hysteresis revealed by the delayed water retraction at decreasing field strength indicates the presence of moderate kinetic barriers to expulsion. Known to scale approximately with the square of the length scale of the corrugations, these barriers preclude the use of increased corrugation sizes while the reduction of the well diameter necessitates stronger electric fields. Field-controlled Cassie-to-Wenzel transitions are therefore optimized by using superhydrophobic surfaces with nanosized corrugations. Abrupt changes indicate a high degree of cooperativity reflecting the correlations between the wetting states of interconnected wells on the textured surface.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    