skip to main content


Title: Applying Theory-Based Analyses to the Entry and Persistence of Native American Engineering Faculty
Native Americans account for only 0.2% (N=68) of engineering faculty, while Native American students are underrepresented in both undergraduate (0.6%; N=1853) and graduate (0.1%; N=173) engineering programs. Advising and mentorship from faculty members who identify as Native American are important components to support programs for Native American students in STEM fields. However, little is known about the experiences and career decisions of Native American engineering faculty. Our exploratory study aims to identify the contextual and individual factors and the linkages in this small population that influence their entry and persistence as engineering faculty. Data is from four initial faculty interviews.  more » « less
Award ID(s):
1743329
NSF-PAR ID:
10073132
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
American Psychological Association 126th Annual Convention
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Science, technology, engineering, and mathematics (STEM) education initiatives in higher education increasingly call for career mentorship opportunities for underrepresented minorities (URM). Researchers (Johnson & Sheppard, 2004; Nelson & Brammer, 2010) note the importance of having faculty to mentor and act as role models for students, often assuming that mentors play a stronger role if they are also from the same cultural background. Native American (NA) faculty members are underrepresented in most fields in colleges and universities, and exceedingly so in engineering. Only 0.2% (N=68) of engineering faculty nationwide identify as Native American (Yoder, 2014). Likewise, NA students are underrepresented in undergraduate (0.6%; N=1853) and graduate (0.1%; N=173) engineering programs. The low percentage in graduate school is of even greater concern as they represent the primary potential pool of new faculty members. Advising and mentorship from those who identify as NA are often considered important components recruiting and retention in STEM fields. For example, Smith and colleagues (2014) found that factors such as communal goal orientation influenced NA engineering students’ motivation and academic performance. However, very few studies account for differences in NA identity or provide a nuanced account of successful NA STEM professional experiences (Page-Reeves et al., 2018). This research paper presents findings from an exploratory study aimed at pinpointing the factors that influence NA entry and persistence in engineering faculty positions. 
    more » « less
  2. Despite increased efforts to stimulate diverse participation in STEM education, Native Americans (NA) continue to be underrepresented in the field of engineering as students (0.6%; N=1853) and faculty (0.2%; N=68) and at a rate disproportionate to their representation in the population (Yoder, 2016). While many systemic factors contribute to the low participation of NA in STEM fields, professional and social support may increase engagement as they pursue college degrees and consider careers in higher education. This presentation offers an overview of contemporary approaches to the career preparation of Native Americans in the field of engineering. This literature review informs an NSF-funded project to explore the factors that influence Native American interests and aspirations for engineer faculty positions (EEC 1743329/1743572). We completed a thorough search using select keywords in three databases for refereed journal articles between 1990-2017. Although there are various STEM education programs for Native Americans, there are some similarities between their specific objectives. Thematic analyses focused on (a) pre-college STEM career awareness and preparation, (b) entry and retention in engineering degrees, and (c) indigenous/native identity and cross-cultural approaches to STEM education. We make recommendations for future research and practice based on trends and gaps in the literature. More research is needed about what constitutes effective NA career mentoring. Additionally, few researchers address the implications of Native Science on engineering education and career preparation. 
    more » « less
  3. Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores the contributing factors. The purpose of our exploratory research is to identify the barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994, 2000), we conducted an online survey to assess the motivational variables that guide the career thinking and advancement of students preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006; Turner et al., 2006), the Career-Related Parent Support Scale (Turner, Alliman-Brissett, Lapan, Udipi, & Ergun, 2003), and the Assessment of Campus Climate for Underrepresented Groups (Rankin, 2001), which were used to measure interests, goals, personal strengths and internal and external barriers and supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their survey responses indicated that students were highly interested in, and had strong self-efficacy for, outcome expectations for, and persistence for pursuing their engineering careers. Their most challenging barriers were financial (e.g., having expenses that are greater than income, and having to work while going to school just to make ends meet) and academic barriers (e.g., not sufficiently prepared academically to study engineering). Perceptions of not fitting in and a lack of career information were also identified as moderately challenging barriers. Students endorsed a number of personal strengths, with the strongest being confidence in their own communication and collaboration skills, as well as commitment to their academic and career preparation. The most notable external support to their engineering career development was their parents’ encouragement to make good grades and to go to a school where they could prepare for a STEM career. Students overall found that their engineering program climates (i.e., interactions with students, faculty, staff, and program expectations of how individuals treat each other) were cooperative, friendly, equitable, and respectful. Study results are interpreted in light of SCCT and recommendations for future research and practice in engineering education are provided. 
    more » « less
  4. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  5. null (Ed.)
    Communities of color are disproportionately burdened by environmental pollution and by obstacles to influence policies that impact environmental health. Black, Hispanic, and Native American students and faculty are also largely underrepresented in environmental engineering programs in the United States. Nearly 80 participants of a workshop at the 2019 Association of Environmental Engineering and Science Professors (AEESP) Research and Education Conference developed recommendations for reversing these trends. Workshop participants identified factors for success in academia, which included adopting a broader definition for the impact of research and teaching. Participants also supported the use of community-based participatory research and classroom action research methods in engineering programs for recruiting, retaining, and supporting the transition of underrepresented students into professional and academic careers. However, institutions must also evolve to recognize the academic value of community-based work to enable faculty, especially underrepresented minority faculty, who use it effectively, to succeed in tenure promotions. Workshop discussions elucidated potential causal relationships between factors that influence the co-creation of research related to academic skills, community skills, mutual trust, and shared knowledge. Based on the discussions from this workshop, we propose a pathway for increasing diversity and community participation in the environmental engineering discipline by exposing students to community-based participatory methods, establishing action research groups for faculty, broadening the definition of research impact to improve tenure promotion experiences for minority faculty, and using a mixed methods approach to evaluate its impact. 
    more » « less