skip to main content

Title: Native American engineering faculty: Insights into entry and persistence
Science, technology, engineering, and mathematics (STEM) education initiatives in higher education increasingly call for career mentorship opportunities for underrepresented minorities (URM). Researchers (Johnson & Sheppard, 2004; Nelson & Brammer, 2010) note the importance of having faculty to mentor and act as role models for students, often assuming that mentors play a stronger role if they are also from the same cultural background. Native American (NA) faculty members are underrepresented in most fields in colleges and universities, and exceedingly so in engineering. Only 0.2% (N=68) of engineering faculty nationwide identify as Native American (Yoder, 2014). Likewise, NA students are underrepresented in undergraduate (0.6%; N=1853) and graduate (0.1%; N=173) engineering programs. The low percentage in graduate school is of even greater concern as they represent the primary potential pool of new faculty members. Advising and mentorship from those who identify as NA are often considered important components recruiting and retention in STEM fields. For example, Smith and colleagues (2014) found that factors such as communal goal orientation influenced NA engineering students’ motivation and academic performance. However, very few studies account for differences in NA identity or provide a nuanced account of successful NA STEM professional experiences (Page-Reeves et al., 2018). This research more » paper presents findings from an exploratory study aimed at pinpointing the factors that influence NA entry and persistence in engineering faculty positions. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1743329
Publication Date:
NSF-PAR ID:
10111060
Journal Name:
Keeping Our Faculty VIII: Recruiting, Retaining, Advancing American Indian Faculty and Faculty of Color
Sponsoring Org:
National Science Foundation
More Like this
  1. Native Americans account for only 0.2% (N=68) of engineering faculty, while Native American students are underrepresented in both undergraduate (0.6%; N=1853) and graduate (0.1%; N=173) engineering programs. Advising and mentorship from faculty members who identify as Native American are important components to support programs for Native American students in STEM fields. However, little is known about the experiences and career decisions of Native American engineering faculty. Our exploratory study aims to identify the contextual and individual factors and the linkages in this small population that influence their entry and persistence as engineering faculty. Data is from four initial faculty interviews.
  2. Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores the contributing factors. The purpose of our exploratory research is to identify the barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994, 2000), we conducted an online survey to assess the motivational variables that guidemore »the career thinking and advancement of students preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006; Turner et al., 2006), the Career-Related Parent Support Scale (Turner, Alliman-Brissett, Lapan, Udipi, & Ergun, 2003), and the Assessment of Campus Climate for Underrepresented Groups (Rankin, 2001), which were used to measure interests, goals, personal strengths and internal and external barriers and supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their survey responses indicated that students were highly interested in, and had strong self-efficacy for, outcome expectations for, and persistence for pursuing their engineering careers. Their most challenging barriers were financial (e.g., having expenses that are greater than income, and having to work while going to school just to make ends meet) and academic barriers (e.g., not sufficiently prepared academically to study engineering). Perceptions of not fitting in and a lack of career information were also identified as moderately challenging barriers. Students endorsed a number of personal strengths, with the strongest being confidence in their own communication and collaboration skills, as well as commitment to their academic and career preparation. The most notable external support to their engineering career development was their parents’ encouragement to make good grades and to go to a school where they could prepare for a STEM career. Students overall found that their engineering program climates (i.e., interactions with students, faculty, staff, and program expectations of how individuals treat each other) were cooperative, friendly, equitable, and respectful. Study results are interpreted in light of SCCT and recommendations for future research and practice in engineering education are provided.« less
  3. Despite increased efforts to stimulate diverse participation in STEM education, Native Americans (NA) continue to be underrepresented in the field of engineering as students (0.6%; N=1853) and faculty (0.2%; N=68) and at a rate disproportionate to their representation in the population (Yoder, 2016). While many systemic factors contribute to the low participation of NA in STEM fields, professional and social support may increase engagement as they pursue college degrees and consider careers in higher education. This presentation offers an overview of contemporary approaches to the career preparation of Native Americans in the field of engineering. This literature review informs anmore »NSF-funded project to explore the factors that influence Native American interests and aspirations for engineer faculty positions (EEC 1743329/1743572). We completed a thorough search using select keywords in three databases for refereed journal articles between 1990-2017. Although there are various STEM education programs for Native Americans, there are some similarities between their specific objectives. Thematic analyses focused on (a) pre-college STEM career awareness and preparation, (b) entry and retention in engineering degrees, and (c) indigenous/native identity and cross-cultural approaches to STEM education. We make recommendations for future research and practice based on trends and gaps in the literature. More research is needed about what constitutes effective NA career mentoring. Additionally, few researchers address the implications of Native Science on engineering education and career preparation.« less
  4. Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores contributing factors. The purpose of our exploratory research is to identify those barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT), we developed an on-line survey to assess the motivational variables that guide the career thinking and advancement of studentsmore »preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006), and the Career-Related Parent Support Scale (Turner et al., 2003), which were used to measure interests, goals, personal strengths and external supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their responses indicated that their most challenging barriers were financial (e.g., having expenses that are greater than income, and having to work while going to school just to make ends meet), and academic barriers (e.g., not sufficiently prepared academically to study engineering). A lack of career information, and perceptions of not fitting in were also identified as moderately challenging barriers. Students endorsed a number of personal strengths, with the strongest being confidence in their own communication and collaboration skills, and commitment to their academic and career preparation. The most notable external support to their engineering career development was their parents’ encouragement to make good grades and to go to a school where they could prepare for a STEM career. Study results will be interpreted in light of theory, and recommendations for future research and practice will be provided.« less
  5. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to thesemore »needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees.« less