- Award ID(s):
- 1717108
- Publication Date:
- NSF-PAR ID:
- 10073233
- Journal Name:
- IEEE INFOCOM 2018 - IEEE Conference on Computer Communications
- Sponsoring Org:
- National Science Foundation
More Like this
-
Service function chaining (SFC), consisting of a sequence of virtual network functions (VNFs) (i.e., firewalls and load balancers), is an effective service provision technique in modern data center networks. By requiring cloud user traffic to traverse the VNFs in order, SFC im- proves the security and performance of the cloud user applications. In this paper, we study how to place an SFC inside a data center to mini- mize the network traffic of the virtual machine (VM) communication. We take a cooperative multi-agent reinforcement learning approach, wherein multiple agents collaboratively figure out the traffic-efficient route for the VM communication. Underlying the SFC placement is a fundamental graph-theoretical prob- lem called the k-stroll problem. Given a weighted graph G(V, E), two nodes s, t ∈ V , and an integer k, the k-stroll problem is to find the shortest path from s to t that visits at least k other nodes in the graph. Our work is the first to take a multi-agent learning approach to solve k- stroll problem. We compare our learning algorithm with an optimal and exhaustive algorithm and an existing dynamic programming(DP)-based heuristic algorithm. We show that our learning algorithm, although lack- ing the complete knowledge ofmore »
-
Virtual network services that span multiple data centers are important to support emerging data-intensive applications in fields such as bioinformatics and retail analytics. Successful virtual network service composition and maintenance requires flexible and scalable ‘constrained shortest path management’ both in the management plane for virtual network embedding (VNE) or network function virtualization service chaining (NFV-SC), as well as in the data plane for traffic engineering (TE). In this paper, we show analytically and empirically that leveraging constrained shortest paths within recent VNE, NFV-SC and TE algorithms can lead to network utilization gains (of up to 50%) and higher energy efficiency. The management of complex VNE, NFV-SC and TE algorithms can be, however, intractable for large scale substrate networks due to the NP-hardness of the constrained shortest path problem. To address such scalability challenges, we propose a novel, exact constrained shortest path algorithm viz.‘, Neighborhoods Method’ (NM). Our NM uses novel search space reduction techniques and has a theoretical quadratic speed-up making it practically faster (by an order of magnitude) than recent branch-and-bound exhaustive search solutions. Finally, we detail our NM-based SDN controller implementation in a real-world testbed to further validate practical NM benefits for virtual network services.
-
We consider a variant of the vehicle routing problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation-based linear-programming relaxation for this VRP. Specifically, we focus on algorithms for the “pricing problem,” which corresponds to the resource-constrained elementary shortest path problem. The first algorithm extends the pulse algorithm for which we derive a new bounding scheme on the maximum load of any route. The second algorithm is based on random coloring from parameterized complexity which can be also combined with other techniques in the literature for improving VRPs, including cutting planes and column enumeration. We conduct numerical studies using VRP benchmarks (with 50–957 nodes) and instances of a medical home care delivery problem using census data in Wayne County, Michigan. Using parallel computing, both pulse and random coloring can significantly improve column generation for solving the linear programming relaxations and we can obtain heuristic integer solutions with small optimality gaps. Combining random coloring with column enumeration, we can obtain improved integer solutions having less than 2%more »
-
Abstract—Virtual Network Functions (VNFs) are software implementation of middleboxes (MBs) (e.g., firewalls and proxy servers) that provide performance and security guarantees for virtual machine (VM) cloud applications. In this paper, we study a new VM flow migration problem for dynamic VNF-enabled cloud data centers (VDCs). The goal is to migrate the VM flows in the dynamic VDCs to minimize the total network traffic while load-balancing VNFs with limited processing capabilities. We refer to the problem as FMDV: flow migration in dynamic VDCs. We propose an optimal and efficient minimum cost flow-based flow migration algorithm and two benefit-based efficient heuristic algorithms to solve the FMDV. Via extensive simulations, we show that our algorithms are effective in mitigating dynamic cloud traffic while achieving load balance among VNFs. In particular, all our algorithms reduce dynamic network traffic in all cases and our optimal algorithm always achieves the best traffic-mitigation effect, reducing the network traffic by up to 28% compared to the case without flow migration.
-
The high reliability required by many future-generation network services can be enforced by proper resource assignments by means of logical partitions, i.e., network slices, applied in optical metro-aggregation networks. Different strategies can be applied to deploy the virtual network functions (VNFs) composing the slices over physical nodes, while providing different levels of resource isolation (among slices) and protection against failures, based on several available techniques. Considering that, in optical metro-aggregation networks, protection can be ensured at different layers, and the slice protection with traffic grooming calls for evolved multilayer protection approaches. In this paper, we investigate the problem of reliable slicing with protection at the lightpath layer for different levels of slice isolation and different VNF deployment strategies. We model the problem through an integer linear program (ILP), and we devise a heuristic for joint optimization of VNF placement and ligthpath selection. The heuristic maps nodes and links over the physical network in a coordinated manner and provides an effective placement of radio access network functions and the routing and wavelength assignment for the optical layer. The effectiveness of the proposed heuristic is validated by comparison with the optimal solution provided by the ILP. Our illustrative numerical results compare the impactmore »