skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance of the Latest Generation Powerline Networking for Green Building Applications
Green building applications need to efficiently communicate fine-grained power consumption patterns of a wide variety of consumer-grade appliances for an effective adaptation and percolation of demand response models in the home environment. A key hurdle to the widespread adoption of such demand response policies in these appliances is the lack of efficient connectivity to a local area network. One solution is delivering telemetry data over existing electrical infrastructure to which the devices are already connected. The use of existing wiring produces a simple and cost-effective solution, avoiding many issues observed with wireless mesh networks (such as islands and bottlenecks), while helping to vacate increasingly congested spectrum. In this paper we explore the feasibility and efficacy of Power-line Communications (PLC) as a backbone of wireless communications in a home environment. We evaluate the behavior of several state-of-the art PLC modems using end-to-end measurements to establish their performance and throughput characteristics. Our preliminary results suggest that PLC is a promising technology for low-bandwidth hungry green building applications but more in depth study is required before making large-scale smart grid deployment.  more » « less
Award ID(s):
1344990
PAR ID:
10073262
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
BuildSys'13 Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Future healthcare systems require smart hospitals with system-wide wireless communications and positioning functions, which cannot be facilitated by existing radio-frequency (RF) wireless technologies. In this paper, we present integrated design of a novel low-complexity received signal strength (RSS) based hybrid visible light communication (VLC) and indoor positioning (VLP) system. This VLC/VLP tracking system consist of host optical transceivers embedded in existing light-emitting diode (LED) bulbs and user-end optical tags, which interface with the existing 120AVC power wiring in a building. The new hybrid VLC/PLC tracking system was validated by simulation and experimentation. This LED VLC tracking system will enable smart hospital operations to modernize next-generation intelligent healthcare systems 
    more » « less
  2. Home energy management system (HEMS) enables residents to actively participate in demand response (DR) programs. It can autonomously optimize the electricity usage of home appliances to reduce the electricity cost based on time-varying electricity prices. However, due to the existence of randomness in the pricing process of the utility and resident's activities, developing an efficient HEMS is challenging. To address this issue, we propose a novel home energy management method for optimal scheduling of different kinds of home appliances based on deep reinforcement learning (DRL). Specifically, we formulate the home energy management problem as an MDP considering the randomness of real-time electricity prices and resident's activities. A DRL approach based on proximal policy optimization (PPO) is developed to determine the optimal DR scheduling strategy. The proposed approach does not need any information on the appliances' models and distribution knowledge of the randomness. Simulation results verify the effectiveness of our proposed approach. 
    more » « less
  3. Escalating application demand and the end of Dennard scaling have put energy management at the center of cloud operations. Because of the huge cost and long lead time of provisioning new data centers, operators want to squeeze as much use out of existing data centers as possible, often limited by power provisioning fixed at the time of construction. Workload demand spikes and the inherent variability of renewable energy, as well as increased power unreliability from extreme weather events and natural disasters, make the data center power management problem even more challenging. We believe it is time to build a power control plane to provide fine-grained observability and control over data center power to operators. Our goal is to help make data centers substantially more elastic with respect to dynamic changes in energy sources and application needs, while still providing good performance to applications. There are many use cases for cloud power control, including increased power oversubscription and use of green energy, resilience to power failures, large-scale power demand response, and improved energy efficiency. 
    more » « less
  4. The next evolutionary step in biological signal monitoring will be enabled by wireless communication. Low power and cost-efficient wireless transceivers are currently being employed for implantable medical devices (IMDs), in addition to military and civilian applications such as monitoring, surveillance, and home automation. The major goal of this paper is to do a thorough and realistic link budget analysis for an implantable wireless transceiver operating in the 3–5 GHz ultrawideband frequency with a link distance of 2 m (which includes 10 mm of brain tissue layer and 1.99 m of air medium), data rate of 100 Mbps with On-Off keying (OOK) modulation, and a minimum receiver sensitivity of −58.01 dBm. The proposed power budget analysis is particularly well suited for distributed brain implant applications as it models the path loss including the tissue layer without compromising the spectrum regulation imposed by the Federal Communications Commission (FCC) for UWB communication. 
    more » « less
  5. IoT (Internet of Things) devices such as sensors have been actively used in 'fogs' to provide critical data during e.g., disaster response scenarios or in-home healthcare. Since IoT devices typically operate in resource-constrained computing environments at the network-edge, data transfer performance to the cloud as well as end-to-end security have to be robust and customizable. In this paper, we present the design and implementation of a middleware featuring "intermittent" and "flexible" end-to-end security for cloud-fog communications. Intermittent security copes with unreliable network connections, and flexibility is achieved through security configurations that are tailored to application needs. Our experiment results show how our middleware that leverages static pre-shared keys forms a promising solution for delivering light-weight, fast and resource-aware security for a variety of IoT-based applications. 
    more » « less