We use a multidimensional signal representation that inte- grates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representa- tion encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.
more »
« less
Unified representation of tractography and diffusion-weighted MRI data using sparse multidimensional arrays
Recently, linear formulations and convex optimization methods have been proposed to predict diffusion-weighted Magnetic Resonance Imaging (dMRI) data given estimates of brain connections generated using tractography algorithms. The size of the linear models comprising such methods grows with both dMRI data and connectome resolution, and can become very large when applied to modern data. In this paper, we introduce a method to encode dMRI signals and large connectomes, i.e., those that range from hundreds of thousands to millions of fascicles (bundles of neuronal axons), by using a sparse tensor decomposition. We show that this tensor decomposition accurately approximates the Linear Fascicle Evaluation (LiFE) model, one of the recently developed linear models. We provide a theoretical analysis of the accuracy of the sparse decomposed model, LiFESD, and demonstrate that it can reduce the size of the model significantly. Also, we develop algorithms to implement the optimization solver using the tensor representation in an efficient way.
more »
« less
- PAR ID:
- 10073354
- Date Published:
- Journal Name:
- Neural Information Processing - Letters and Reviews
- ISSN:
- 1738-2572
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Canonical polyadic (CP) decomposition of a tensor is a basic operation in a lot of applications such as data mining and video foreground/background separation. However, existing algorithms for CP decomposition require users to provide a rank of the target tensor data as part of the input and finding the rank of a tensor is an NP-hard problem. Currently, to perform CP decomposition, users are required to make an informed guess of a proper tensor rank based on the data at hand, and the result may still be suboptimal. In this paper, we propose to conduct CP decomposition and tensor rank approximation together, so that users do not have to provide the proper rank beforehand, and the decomposition algorithm will find the proper rank and return a high-quality result. We formulate an optimization problem with an objective function consisting of a least-squares Tikhonov regularization and a sparse L1-regularization term. We also test its effectiveness over real applications with moving object videos.more » « less
-
Abstract Diffusion MRI (dMRI) has become a crucial imaging technique in the field of neuroscience, with a growing number of clinical applications. Although most studies still focus on the brain, there is a growing interest in utilizing dMRI to investigate the healthy or injured spinal cord. The past decade has also seen the development of biophysical models that link MR-based diffusion measures to underlying microscopic tissue characteristics, which necessitates validation through ex vivo dMRI measurements. Building upon 13 years of research and development, we present an open-source, MATLAB-based academic software toolkit dubbed ACID: A Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data. ACID is an extension to the Statistical Parametric Mapping (SPM) software, designed to process and model dMRI data of the brain, spinal cord, and ex vivo specimens by incorporating state-of-the-art artifact correction tools, diffusion and kurtosis tensor imaging, and biophysical models that enable the estimation of microstructural properties in white matter. Additionally, the software includes an array of linear and nonlinear fitting algorithms for accurate diffusion parameter estimation. By adhering to the Brain Imaging Data Structure (BIDS) data organization principles, ACID facilitates standardized analysis, ensures compatibility with other BIDS-compliant software, and aligns with the growing availability of large databases utilizing the BIDS format. Furthermore, being integrated into the popular SPM framework, ACID benefits from a wide range of segmentation, spatial processing, and statistical analysis tools as well as a large and growing number of SPM extensions. As such, this comprehensive toolbox covers the entire processing chain from raw DICOM data to group-level statistics, all within a single software package.more » « less
-
Abstract Gaussian process (GP) is a staple in the toolkit of a spatial statistician. Well‐documented computing roadblocks in the analysis of large geospatial datasets using GPs have now largely been mitigated via several recent statistical innovations. Nearest neighbor Gaussian process (NNGP) has emerged as one of the leading candidates for such massive‐scale geospatial analysis owing to their empirical success. This article reviews the connection of NNGP to sparse Cholesky factors of the spatial precision (inverse‐covariance) matrix. Focus of the review is on these sparse Cholesky matrices which are versatile and have recently found many diverse applications beyond the primary usage of NNGP for fast parameter estimation and prediction in the spatial (generalized) linear models. In particular, we discuss applications of sparse NNGP Cholesky matrices to address multifaceted computational issues in spatial bootstrapping, simulation of large‐scale realizations of Gaussian random fields, and extensions to nonparametric mean function estimation of a GP using random forests. We also review a sparse‐Cholesky‐based model for areal (geographically aggregated) data that addresses long‐established interpretability issues of existing areal models. Finally, we highlight some yet‐to‐be‐addressed issues of such sparse Cholesky approximations that warrant further research. This article is categorized under:Algorithms and Computational Methods > AlgorithmsAlgorithms and Computational Methods > Numerical Methodsmore » « less
-
We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling.more » « less
An official website of the United States government

