skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ACID: A comprehensive toolbox for image processing and modeling of brain, spinal cord, and ex vivo diffusion MRI data
Abstract Diffusion MRI (dMRI) has become a crucial imaging technique in the field of neuroscience, with a growing number of clinical applications. Although most studies still focus on the brain, there is a growing interest in utilizing dMRI to investigate the healthy or injured spinal cord. The past decade has also seen the development of biophysical models that link MR-based diffusion measures to underlying microscopic tissue characteristics, which necessitates validation through ex vivo dMRI measurements. Building upon 13 years of research and development, we present an open-source, MATLAB-based academic software toolkit dubbed ACID: A Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data. ACID is an extension to the Statistical Parametric Mapping (SPM) software, designed to process and model dMRI data of the brain, spinal cord, and ex vivo specimens by incorporating state-of-the-art artifact correction tools, diffusion and kurtosis tensor imaging, and biophysical models that enable the estimation of microstructural properties in white matter. Additionally, the software includes an array of linear and nonlinear fitting algorithms for accurate diffusion parameter estimation. By adhering to the Brain Imaging Data Structure (BIDS) data organization principles, ACID facilitates standardized analysis, ensures compatibility with other BIDS-compliant software, and aligns with the growing availability of large databases utilizing the BIDS format. Furthermore, being integrated into the popular SPM framework, ACID benefits from a wide range of segmentation, spatial processing, and statistical analysis tools as well as a large and growing number of SPM extensions. As such, this comprehensive toolbox covers the entire processing chain from raw DICOM data to group-level statistics, all within a single software package.  more » « less
Award ID(s):
1751636 2038118
PAR ID:
10638315
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Imaging Neuroscience
Date Published:
Journal Name:
Imaging Neuroscience
Volume:
2
ISSN:
2837-6056
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bernard, O.; Clarysse, P.; Duchateau, N.; Ohayon, J.; Viallon, M (Ed.)
    Increased passive myocardial stiffness is implicated in the pathophysiology of many cardiac diseases, and its in vivo estimation can improve management of heart disease. MRI-driven computational constitutive modeling has been used extensively to evaluate passive myocardial stiffness. This approach requires subject-specific data that is best acquired with different MRI sequences: conventional cine (e.g. bSSFP), tagged MRI (or DENSE), and cardiac diffusion tensor imaging. However, due to the lack of comprehensive datasets and the challenge of incorporating multi-phase and single-phase disparate MRI data, no studies have combined in vivo cine bSSFP, tagged MRI, and cardiac diffusion tensor imaging to estimate passive myocardial stiffness. The objective of this work was to develop a personalized in silico left ventricular model to evaluate passive myocardial stiffness by integrating subject-specific geometric data derived from cine bSSFP, regional kinematics extracted from tagged MRI, and myocardial microstructure measured using in vivo cardiac diffusion tensor imaging. To demonstrate the feasibility of using a complete subject-specific imaging dataset for passive myocardial stiffness estimation, we calibrated a bulk stiffness parameter of a transversely isotropic exponential constitutive relation to match the local kinematic field extracted from tagged MRI. This work establishes a pipeline for developing subject-specific biomechanical ventricular models to probe passive myocardial mechanical behavior, using comprehensive cardiac imaging data from multiple in vivo MRI sequences. 
    more » « less
  2. The hippocampus is a crucial brain structure involved in memory formation, spatial navigation, emotional regulation, and learning. An accurate MRI image segmentation of the human hippocampus plays an important role in multiple neuro-imaging research and clinical practice, such as diagnosing neurological diseases and guiding surgical interventions. While most hippocampus segmentation studies focus on using T1-weighted or T2-weighted MRI scans, we explore the use of diffusion-weighted MRI (dMRI), which offers unique insights into the microstructural properties of the hippocampus. Particularly, we utilize various anisotropy measures derived from diffusion MRI (dMRI), including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, for a multi-contrast deep learning approach to hippocampus segmentation. To exploit the unique benefits offered by various contrasts in dMRI images for accurate hippocampus segmentation, we introduce an innovative multimodal deep learning architecture integrating cross-attention mechanisms. Our proposed framework comprises a multi-head encoder designed to transform each contrast of dMRI images into distinct latent spaces, generating separate image feature maps. Subsequently, we employ a gated cross-attention unit following the encoder, which facilitates the creation of attention maps between every pair of image contrasts. These attention maps serve to enrich the feature maps, thereby enhancing their effectiveness for the segmentation task. In the final stage, a decoder is employed to produce segmentation predictions utilizing the attention-enhanced feature maps. The experimental outcomes demonstrate the efficacy of our framework in hippocampus segmentation and highlight the benefits of using multi-contrast images over single-contrast images in diffusion MRI image segmentation. 
    more » « less
  3. The cerebrospinal fluid surrounds the brain and the spinal cord, and is believed to be a potential risk factor to many CNS diseases. The biomechanics of the CSF flow in the brain ventricles is poorly understood due partly to the difficulty in obtaining the flow data in vivo. This paper describes the outcomes of a computational study to examine the elastic response of the walls of the ventricles and its effects on the flow. Comparisons of the simulated results are guided by clinical data obtained with the Time-SLIP MRI, which captures ventricular CSF flows in real time in vivo. 
    more » « less
  4. The cerebrospinal fluid surrounds the brain and the spinal cord, and is believed to be a potential risk factor to many CNS diseases. The biomechanics of the CSF flow in the brain ventricles is poorly understood due partly to the difficulty in obtaining the flow data in vivo. This paper describes the outcomes of a computational study to examine the elastic response of the walls of the ventricles and its effects on the flow. Comparisons of the simulated results are guided by clinical data obtained with the Time-SLIP MRI, which captures ventricular CSF flows in real time in vivo. 
    more » « less
  5. The Human Connectome Project (HCP) has become a keystone dataset in human neuroscience, with a plethora of important applications in advancing brain imaging methods and an understanding of the human brain. We focused on tractometry of HCP diffusion-weighted MRI (dMRI) data. We used an open-source software library (pyAFQ;https://yeatmanlab.github.io/pyAFQ) to perform probabilistic tractography and delineate the major white matter pathways in the HCP subjects that have a complete dMRI acquisition (n = 1,041). We used diffusion kurtosis imaging (DKI) to model white matter microstructure in each voxel of the white matter, and extracted tract profiles of DKI-derived tissue properties along the length of the tracts. We explored the empirical properties of the data: first, we assessed the heritability of DKI tissue properties using the known genetic linkage of the large number of twin pairs sampled in HCP. Second, we tested the ability of tractometry to serve as the basis for predictive models of individual characteristics (e.g., age, crystallized/fluid intelligence, reading ability, etc.), compared to local connectome features. To facilitate the exploration of the dataset we created a new web-based visualization tool and use this tool to visualize the data in the HCP tractometry dataset. Finally, we used the HCP dataset as a test-bed for a new technological innovation: the TRX file-format for representation of dMRI-based streamlines. We released the processing outputs and tract profiles as a publicly available data resource through the AWS Open Data program's Open Neurodata repository. We found heritability as high as 0.9 for DKI-based metrics in some brain pathways. We also found that tractometry extracts as much useful information about individual differences as the local connectome method. We released a new web-based visualization tool for tractometry --- “Tractoscope” (https://nrdg.github.io/tractoscope). We found that the TRX files require considerably less disk space - a crucial attribute for large datasets like HCP. In addition, TRX incorporates a specification for grouping streamlines, further simplifying tractometry analysis. 
    more » « less