skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topological resolutions in K(2)-local homotopy theory at the prime 2: TOPOLOGICAL RESOLUTIONS IN K(2)-LOCAL HOMOTOPY THEORY
Award ID(s):
1638352
PAR ID:
10073615
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of Topology
Volume:
11
Issue:
4
ISSN:
1753-8416
Page Range / eLocation ID:
p. 918-957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical K-theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Our nonlinear spectral localizer framework yields a quantitative definition of topologically non-trivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time-evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials 
    more » « less