skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: A virtual animated commentator architecture for cybersecurity competitions
Cybersecurity competitions are exciting for the game participants; however, the excitement and educational value do not necessarily transfer to audiences because audiences may not be experts in the field. To improve the audiences’ comprehension and engagement levels at these events, we have proposed a virtual commentator architecture for cybersecurity competitions. Based on the architecture, we have developed a virtual animated agent that serves as a commentator in cybersecurity competition. This virtual commentator can interact with audiences with facial expressions and the corresponding hand gestures. The commentator can provide several types of feedback including causal, congratulatory, deleterious, assistive, background, and motivational responses. In addition, when producing speech, the lips, tongue, and jaw provide visual cues that complement auditory cues. The virtual commentator is flexible enough to be employed in the Collegiate Cyber Defense Competitions environment. Our preliminary results demonstrate the architecture can generate phonemes with timestamps and behavioral tags. These timestamps and tags provide solid building blocks for implementing desired responsive behaviors.  more » « less
Award ID(s):
1714261
NSF-PAR ID:
10073975
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Information Technology-New Generations
Volume:
738
Issue:
2018
Page Range / eLocation ID:
43-50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Games and competitions enhance student engagement and help improve hands-on learning of computing concepts. Focusing on targeted goals, competitions provide a sense of community and accomplishment among students, fostering peer-learning opportunities. Despite these benefits of motivating and enhancing student learning, the impact of competitions on curricular learning outcomes has not been sufficiently studied. For institutional or program accreditation, understanding the extent to which students achieve course or program learning outcomes is essential, and helps in establishing continuous improvement processes for the program curriculum. Utilizing the Collegiate Cyber Defense Competition (CCDC), a curricular assessment was conducted for an undergraduate cybersecurity program at a US institution. This archetypal competition was selected as it provides an effective platform for broader program learning outcomes, as students need to: (1) function in a team and communicate effectively (teamwork and communication skills); (2) articulate technical information to non-technical audiences (communication skills); (3) apply excellent technical and non-technical knowledge (design and analysis skills applied to problem-solving); and (4) function well under adversity (real-world problem-solving skills). Using data for both students who competed and who did not, student progress was tracked over five years. Preliminary analysis showed that these competitions made marginally-interested students become deeply engaged with the curriculum; broadened participation among women who became vital to team success by showcasing their technical and management skills; and pushed students to become self-driven, improving their academic performance and career placements. This experience report also reflects on what was learned and outlines the next steps for this work. 
    more » « less
  2. Games and competitions enhance student engagement and help improve hands-on learning of computing concepts. Focusing on targeted goals, competitions provide a sense of community and accomplishment among students, fostering peer-learning opportunities. Despite these benefits of motivating and enhancing student learning, the impact of competitions on curricular learning outcomes has not been sufficiently studied. For institutional or program accreditation, understanding the extent to which students achieve course or program learning outcomes is essential, and helps in establishing continuous improvement processes for the program curriculum. Utilizing the Collegiate Cyber Defense Competition (CCDC), a curricular assessment was conducted for an undergraduate cybersecurity program at a US institution. This archetypal competition was selected as it provides an effective platform for broader program learning outcomes, as students need to: (1) function in a team and communicate effectively (teamwork and communication skills); (2) articulate technical information to non-technical audiences (communication skills); (3) apply excellent technical and non-technical knowledge (design and analysis skills applied to problems-solving); and (4) function well under adversity (real-world problem-solving skills). Using data for both students who competed and who did not, student progress was tracked over five years. Preliminary analysis showed that these competitions made marginally-interested students become deeply engaged with the curriculum; broadened participation among women who became vital to team success by showcasing their technical and management skills; and pushed students to become self-driven, improving their academic performance and career placements. This experience report also reflects on what was learned and outlines the next steps for this work. 
    more » « less
  3. Software Keyloggers are dominant class of malicious applications that surreptitiously logs all the user activity to gather confidential information. Among many other types of keyloggers, API-based keyloggers can pretend as unprivileged program running in a user-space to eavesdrop and record all the keystrokes typed by the user. In a Linux environment, defending against these types of malware means defending the kernel against being compromised and it is still an open and difficult problem. Considering how recent trend of edge computing extends cloud computing and the Internet of Things (IoT) to the edge of the network, a new types of intrusiondetection system (IDS) has been used to mitigate cybersecurity threats in edge computing. Proposed work aims to provide secure environment by constantly checking virtual machines for the presence of keyloggers using cutting edge artificial immune system (AIS) based technology. The algorithms that exist in the field of AIS exploit the immune system’s characteristics of learning and memory to solve diverse problems. We further present our approach by employing an architecture where host OS and a virtual machine (VM) layer actively collaborate to guarantee kernel integrity. This collaborative approach allows us to introspect VM by tracking events (interrupts, system calls, memory writes, network activities, etc.) and to detect anomalies by employing negative selection algorithm (NSA). 
    more » « less
  4. Abstract Background

    Increased use of visualizations as wildfire communication tools with public and professional audiences—particularly 3D videos and virtual or augmented reality—invites discussion of their ethical use in varied social and temporal contexts. Existing studies focus on the use of such visualizations prior to fire events and commonly use hypothetical scenarios intended to motivate proactive mitigation or explore decision-making, overlooking the insights that those who have already experienced fire events can provide to improve user engagement and understanding of wildfire visualizations more broadly. We conducted semi-structured interviews with 101 residents and professionals affected by Colorado’s 2020 East Troublesome and 2021 Marshall Fires, using 3D model visualizations of fire events on tablets as a discussion tool to understand how fire behavior influenced evacuation experiences and decision-making. We provide empirically gathered insights that can inform the ethical use of wildfire visualizations by scientists, managers, and communicators working at the intersection of fire management and public safety.

    Results

    Study design, interview discussions, and field observations from both case studies reveal the importance of nuanced and responsive approaches for the use of 3D visualizations, with an emphasis on the implementation of protocols that ensure the risk of harm to the intended audience is minimal. We share five considerations for use of visualizations as communication tools with public and professional audiences, expanding existing research into post-fire spaces: (1) determine whether the use of visualizations will truly benefit users; (2) connect users to visualizations by incorporating local values; (3) provide context around model uncertainty; (4) design and share visualizations in ways that meet the needs of the user; (5) be cognizant of the emotional impacts that sharing wildfire visualizations can have.

    Conclusions

    This research demonstrates the importance of study design and planning that considers the emotional and psychological well-being of users. For users that do wish to engage with visualizations, this technical note provides guidance for ensuring meaningful understandings that can generate new discussion and knowledge. We advocate for communication with visualizations that consider local context and provide opportunities for users to engage to a level that suits them, suggesting that visualizations should serve as catalysts for meaningful dialogue rather than conclusive information sources.

     
    more » « less
  5. Abstract Background

    Rapid improvements in inexpensive, low-power, movement and environmental sensors have sparked a revolution in animal behavior research by enabling the creation of data loggers (henceforth, tags) that can capture fine-grained behavioral data over many months. Nevertheless, development of tags that are suitable for use with small species, for example, birds under 25 g, remains challenging because of the extreme mass (under 1$$\textrm{g}$$g) and power (average current under 1$$\upmu$$μA) constraints. These constraints dictate that a tag should carry exactly the sensors required for a given experiment and the data collection protocol should be specialized to the experiment. Furthermore, it can be extremely challenging to design hardware and software to achieve the energy efficiency required for long tag life.

    Results

    We present an activity monitor, BitTag, that can continuously collect activity data for 4–12 months at 0.5–0.8$$\textrm{g}$$g, depending upon battery choice, and which has been used to collect more than 500,000 h of data in a variety of experiments. The BitTag architecture provides a general platform to support the development and deployment of custom sub-$$\textrm{g}$$gtags. This platform consists of a flexible tag architecture, software for both tags and host computers, and hardware to provide the host/tag interface necessary for preparing tags for “flight” and for accessing tag data “post-flight”. We demonstrate how the BitTag platform can be extended to quickly develop novel tags with other sensors while satisfying the 1g/1$$\upmu$$μA mass and power requirements through the design of a novel barometric pressure sensing tag that can collect pressure and temperature data every 60$$\textrm{s}$$sfor a year with mass under 0.6$$\textrm{g}$$g.

     
    more » « less