- Award ID(s):
- 1816029
- NSF-PAR ID:
- 10345274
- Date Published:
- Journal Name:
- Frontiers in Virtual Reality
- Volume:
- 3
- ISSN:
- 2673-4192
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Teleporting is a popular interface for locomotion through virtual environments (VEs). However, teleporting can cause disorientation. Spatial boundaries, such as room walls, are effective cues for reducing disorientation. This experiment explored the characteristics that make a boundary effective. All boundaries tested reduced disorientation, and boundaries representing navigational barriers (e.g., a fence) were no more effective than those defined only by texture changes (e.g., flooring transition). The findings indicate that boundaries need not be navigational barriers to reduce disorientation, giving VE designers greater flexibility in the spatial cues to include.more » « less
-
null (Ed.)The proliferation of locomotion interfaces for virtual reality necessitates a framework for predicting and evaluating navigational success. Spatial updating-the process of mentally updating one's self-location during locomotion-is a core component of navigation, is easy to measure, and is sensitive to common elements of locomotion interfaces. This paper highlights three factors that influence spatial updating: body-based self-motion cues, environmental cues, and characteristics of the individual. The concordance framework, which characterizes locomotion interfaces based on agreement between body movement and movement through the environment, serves as a useful starting point for understanding the effectiveness of locomotion interfaces for enabling accurate navigation.more » « less
-
null (Ed.)Teleporting interfaces are widely used in virtual reality applications to explore large virtual environments. When teleporting, the user indicates the intended location in the virtual environment and is instantly transported, typically without self-motion cues. This project explored the cost of teleporting on the acquisition of survey knowledge (i.e., a ”cognitive map”). Two teleporting interfaces were compared, one with and one without visual and body-based rotational self-motion cues. Both interfaces lacked translational self-motion cues. Participants used one of the two teleporting interfaces to find and study the locations of six objects scattered throughout a large virtual environment. After learning, participants completed two measures of cognitive map fidelity: an object-to-object pointing task and a map drawing task. The results indicate superior spatial learning when rotational self-motion cues were available. Therefore, virtual reality developers should strongly consider the benefits of rotational self-motion cues when creating and choosing locomotion interfaces.more » « less
-
Virtual environments (VEs) can be infinitely large, but movement of the virtual reality (VR) user is constrained by the surrounding real environment. Teleporting has become a popular locomotion interface to allow complete exploration of the VE. To teleport, the user selects the intended position (and sometimes orientation) before being instantly transported to that location. However, locomotion interfaces such as teleporting can cause disorientation. This experiment explored whether practice and feedback when using the teleporting interface can reduce disorientation. VR headset owners participated remotely. On each trial of a triangle completion task, the participant traveled along two path legs through a VE before attempting to point to the path origin. Travel was completed with one of two teleporting interfaces that differed in the availability of rotational self-motion cues. Participants in the feedback condition received feedback about their pointing accuracy. For both teleporting interfaces tested, feedback caused significant improvement in pointing performance, and practice alone caused only marginal improvement. These results suggest that disorientation in VR can be reduced through feedback-based training.more » « less
-
Abstract Though ferroelectric HfO2thin films are now well characterized, little is currently known about their grain substructure. In particular, the formation of domain and phase boundaries requires investigation to better understand phase stabilization, switching, and phase interconversion. Here, scanning transmission electron microscopy is applied to investigate the atomic structure of boundaries in these materials. It is found that orthorhombic/orthorhombic domain walls and coherent orthorhombic/monoclinic interphase boundaries form throughout individual grains. The results inform how interphase boundaries can impose strain conditions that may be key to phase stabilization. Moreover, the atomic structure near interphase boundary walls suggests potential for their mobility under bias, which has been speculated to occur in perovskite morphotropic phase boundary systems by mechanisms similar to domain boundary motion.