skip to main content


Title: Morphology of the petrosal and stapes of Borealestes (Mammaliaformes, Docodonta) from the Middle Jurassic of Skye, Scotland
Abstract

We describe, in unprecedented detail, the petrosals and stapes of the docodontBorealestesfrom the Middle Jurassic of Scotland, using high resolution μCTand phase‐contrast synchrotron imaging. We describe the inner ear endocast and the vascularized interior structure of the petrosal, and provide the first endocranial view of a docodontan petrosal. Our study confirms some similarities in petrosal and stapedial morphology with the better knownHaldanodonof the Late Jurassic of Portugal, including: (1) the degree of curvature of the cochlea; (2) multiple features related to the highly pneumatized paroccipital region; (3) the shape of lateral trough, the fossa of the M. tensor tympani, and the ridge on the promontorium; (4) the round shape of the fenestra vestibuli; and (5) overall morphology of the stapes. ButBorealestesdiffers fromHaldanodonin having a bony ridge that separates the tympanic opening of the prootic canal, the secondary facial foramen and the hiatus Fallopii, from the fenestra vestibuli. We identify two new vascular structures: the anterior and posterior trans‐cochlear sinuses, which traverse the pars cochlearis around the cochlear nerve (VIII). These trans‐cochlear sinuses have not been observed in previous docodont specimens, and could be an autapomorphy ofBorealestes, or apomorphic for this clade. We also establish the anatomical relationship of the circum‐promontorium plexus to the inner endocast. The high quality of our scans has made these structures visible for the first time.

 
more » « less
NSF-PAR ID:
10074066
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Papers in Palaeontology
Volume:
5
Issue:
1
ISSN:
2056-2799
Page Range / eLocation ID:
p. 139-156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The end‐Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non‐avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high‐resolution computed tomography (CT) scanning to describe the endocranial and inner ear endocasts of two species,Chriacus pelvidensandChriacus baldwini, which belong to a cluster of ‘archaic’ placental mammals called ‘arctocyonid condylarths’ that thrived during theca. 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long‐mysterious ‘arctocyonids’, and suggest thatChriacuswas an animal with anencephalization quotient (EQ)range of 0.12–0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate thatChriacuswas slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark.Chriacusshares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear ofChriacusalso shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship betweenChriacusand the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals.

     
    more » « less
  2. Abstract

    Cranial endocasts, or the internal molds of the braincase, are a crucial correlate for investigating the neuroanatomy of extinct vertebrates and tracking brain evolution through deep time. Nevertheless, the validity of such studies pivots on the reliability of endocasts as a proxy for brain morphology. Here, we employ micro‐computed tomography imaging, including diffusible iodine‐based contrast‐enhancedCT, and a three‐dimensional geometric morphometric framework to examine both size and shape differences between brains and endocasts of two exemplar archosaur taxa – the American alligator (Alligator mississippiensis) and the domestic chicken (Gallus gallus). With ontogenetic sampling, we quantitatively evaluate how endocasts differ from brains and whether this deviation changes during development. We find strong size and shape correlations between brains and endocasts, divergent ontogenetic trends in the brain‐to‐endocast correspondence between alligators and chickens, and a comparable magnitude between brain–endocast shape differences and intraspecific neuroanatomical variation. The results have important implications for paleoneurological studies in archosaurs. Notably, we demonstrate that the pattern of endocranial shape variation closely reflects brain shape variation. Therefore, analyses of endocranial morphology are unlikely to generate spurious conclusions about large‐scale trends in brain size and shape. To mitigate any artifacts, however, paleoneurological studies should consider the lower brain–endocast correspondence in the hindbrain relative to the forebrain; higher size and shape correspondences in chickens than alligators throughout postnatal ontogeny; artificially ‘pedomorphic’ shape of endocasts relative to their corresponding brains; and potential biases in both size and shape data due to the lack of control for ontogenetic stages in endocranial sampling.

     
    more » « less
  3. The anatomy of the petrosal and associated middle ear structures are described and illustrated for the brown rat, Rattus norvegicus (Berkenhout, 1769). Although the middle ear in this iconic mammal has been treated by prior authors, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. Descriptions are based on specimens from the osteological collections of the Section of Mammals, Carnegie Museum of Natural History, and a CT scanned osteological specimen from the Texas Memorial Museum. The petrosal, ectotympanic, malleus, incus, stapes, and inner ear were segmented from the CT scans. The petrosal of the brown rat is only loosely attached to the cranium, primarily along its posterior border; it is separated from the basisphenoid, alisphenoid, and squamosal by a large piriform fenestra that transmits various neurovascular structures including the postglenoid vein. The extent of the piriform fenestra broadly exposes the tegmen tympani of the petrosal in lateral view. The floor of the middle ear is formed by the expanded ectotympanic bulla, which is tightly held to the petrosal with five points of contact. The surfaces of the petrosal affording contact with the ectotympanic bulla are the rostral tympanic process, the epitympanic wing, the tegmen tympani, two of the three parts of the caudal tympanic process, and the tympanohyal, with the ectotympanic fused to the last. The ectotympanic in turn is fused to the elongate rostral process of the malleus, which is only discoverable through the study of juvenile specimens. In addition to osteology, the major nerves, arteries, and veins of the petrosal are described and illustrated based on the literature and osteological correlates. The petrosal of the brown rat is compared with those of several Eocene rodents to put the extant form in the context of early members of the rodent lineage. Comparisons benefitted from CT scans of the middle Eocene ischromyoid Paramys delicatus Leidy, 1871, from the western United States, affording the first description of the endocranial surface of the petrosal in an Eocene rodent. The petrosals in the Eocene fossils are more tightly held in the cranium, but the ectotympanic contacts the petrosal through the same five points, with some modifications. The most unexpected discovery in Paramys delicatus was the presence of a prominent tentorial process of the parietal in contact with the reduced crista petrosa. 
    more » « less
  4. Abstract

    Nylanderia(Emery) is one of the world's most diverse ant genera, with 123 described species worldwide and hundreds more undescribed. Fifteen globetrotting or invasive species have widespread distributions and are often encountered outside their native ranges. A molecular approach to understanding the evolutionary history and to revision ofNylanderiataxonomy is needed because historical efforts based on morphology have proven insufficient to define major lineages and delimit species boundaries, especially where adventive species are concerned. To address these problems, we generated the first genus‐wide genomic dataset ofNylanderiausing ultraconserved elements (UCEs) to resolve the phylogeny of major lineages, determine the age and origin of the genus, and describe global biogeographical patterns. Sampling from seven biogeographical regions revealed a Southeast Asian origin ofNylanderiain the mid‐Eocene and four distinct biogeographical clades in the Nearctic, the Neotropics, the Afrotropics/Malagasy region, and Australasia. The Nearctic and Neotropical clades are distantly related, indicating two separate dispersal events to the Americas between the late Oligocene and early Miocene. We also addressed the problem of misidentification that has characterized species‐level taxonomy inNylanderiaas a result of limited morphological variation in the worker caste by evaluating the integrity of species boundaries in six of the most widespreadNylanderiaspecies. We sampled across ranges of species in theN. bourbonicacomplex (N. bourbonica(Forel) + N. vaga(Forel)), theN. fulvacomplex (N. fulva(Mayr) + N. pubens(Forel)), and theN. guatemalensiscomplex (N. guatemalensis(Forel) + N. steinheili(Forel)) to clarify their phylogenetic placement. Deep splits within these complexes suggest that some species names – specificallyN. bourbonicaandN. guatemalensis– each are applied to multiple cryptic species. In exhaustively samplingNylanderiadiversity in the West Indies, a ‘hot spot’ for invasive taxa, we found five adventive species among 22 in the region; many remain morphologically indistinguishable from one another, despite being distantly related. We stress that overcoming the taxonomic impediment through the use of molecular phylogeny and revisionary study is essential for conservation and invasive species management.

     
    more » « less
  5. ABSTRACT

    Skeletal morphology is important in evolutionary, genetic, developmental, physiological, and functional studies. Although samples from free‐ranging individuals may be preferable, constraints of sample size, demography, or conservation status may necessitate the inclusion of captive‐born individuals. Captivity may be associated with physical, physiological, or behavioral differences that may affect skeletal form. This study assesses differences in postcranial skeletal form between free‐range and captive‐bornMacaca mulattaandSaguinus oedipus. Samples included free‐rangeM. mulattafrom Cayo Santiago (Caribbean Primate Research Center) and captive‐born macaques from the Wisconsin National Primate Research Center.S. oedipussamples included free‐range born and captive‐born individuals from the Oak Ridge Associated Universities Marmoset Research Center. Twenty‐four dimensions of various bones, including the scapula, upper limb, innominate and lower limb, were recorded for adults. Age of epiphyseal closure was recorded for immature captive‐bornM. mulatta. Analysis of variance and principal component analyses tested significant differences between free‐range born and captive‐born individuals in each species. Significant differences were present in size and shape of postcrania between free‐range and captive‐born within taxa. Free‐range macaques were larger than captive‐born macaques, but this pattern did not consistently carry over to theSaguinussamples. Shape differences, while present throughout the skeleton, were especially prominent in the scapula. Differences in developmental timing, nutrition, and physical activity can be expected to contribute to the observed differences in postcranial skeletal form. These differences should be considered when captive‐born primates are included in morphological or evolutionary studies. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 302:761–774, 2019. © 2018 Wiley Periodicals, Inc.

     
    more » « less