skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anatomy of the petrosal and middle ear of the brown rat, Rattus norvegicus (Berkenhout, 1769) (Rodentia, Muridae)
The anatomy of the petrosal and associated middle ear structures are described and illustrated for the brown rat, Rattus norvegicus (Berkenhout, 1769). Although the middle ear in this iconic mammal has been treated by prior authors, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. Descriptions are based on specimens from the osteological collections of the Section of Mammals, Carnegie Museum of Natural History, and a CT scanned osteological specimen from the Texas Memorial Museum. The petrosal, ectotympanic, malleus, incus, stapes, and inner ear were segmented from the CT scans. The petrosal of the brown rat is only loosely attached to the cranium, primarily along its posterior border; it is separated from the basisphenoid, alisphenoid, and squamosal by a large piriform fenestra that transmits various neurovascular structures including the postglenoid vein. The extent of the piriform fenestra broadly exposes the tegmen tympani of the petrosal in lateral view. The floor of the middle ear is formed by the expanded ectotympanic bulla, which is tightly held to the petrosal with five points of contact. The surfaces of the petrosal affording contact with the ectotympanic bulla are the rostral tympanic process, the epitympanic wing, the tegmen tympani, two of the three parts of the caudal tympanic process, and the tympanohyal, with the ectotympanic fused to the last. The ectotympanic in turn is fused to the elongate rostral process of the malleus, which is only discoverable through the study of juvenile specimens. In addition to osteology, the major nerves, arteries, and veins of the petrosal are described and illustrated based on the literature and osteological correlates. The petrosal of the brown rat is compared with those of several Eocene rodents to put the extant form in the context of early members of the rodent lineage. Comparisons benefitted from CT scans of the middle Eocene ischromyoid Paramys delicatus Leidy, 1871, from the western United States, affording the first description of the endocranial surface of the petrosal in an Eocene rodent. The petrosals in the Eocene fossils are more tightly held in the cranium, but the ectotympanic contacts the petrosal through the same five points, with some modifications. The most unexpected discovery in Paramys delicatus was the presence of a prominent tentorial process of the parietal in contact with the reduced crista petrosa.  more » « less
Award ID(s):
1654949
PAR ID:
10160592
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annals of Carnegie Museum
Volume:
86
Issue:
1
ISSN:
1943-6300
Page Range / eLocation ID:
1-35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe the tympanic anatomy of the petrosal of Deltatherium fundaminis, an enigmatic Paleocene mammal based on cranial specimens recovered from New Mexico, U.S.A. Although the ear region of Deltatherium has previously been described, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. The dental and cranial anatomy of Deltatherium is a chimera, with morphological similarities to both ‘condylarth’ and ‘cimolestan’ taxa. As such, the phylogenetic relationships of this taxon have remained elusive since its discovery, and it has variably been associated with Arctocyonidae, Pantodonta and Tillodontia. The petrosal of Deltatherium is anteriorly bordered by an open space comprising a contiguous carotid opening and pyriform fenestra. The promontorium features both a small rostral tympanic process and small epitympanic wing but lacks well-marked sulci. A large ventral facing external aperture of the canaliculus cochleae is present and bordered posteriorly by a well-developed caudal tympanic process. The hiatus Fallopii opens on the ventral surface of the petrosal. The tegmen tympani is mediolaterally broad and anteriorly expanded, and its anterior margin is perforated by a foramen for the ramus superior of the stapedial artery. The tympanohyal is small but approximates the caudal tympanic process to nearly enclose the stylomastoid notch. The mastoid is widely exposed on the basicranium and bears an enlarged mastoid process, separate from the paraoccipital process. These new observations provide novel anatomical data corroborating previous hypotheses regarding the plesiomorphic eutherian condition but also reveal subtle differences among Paleocene eutherians that have the potential to help inform the phylogeny of Deltatherium. 
    more » « less
  2. Abstract Cranial skeletal material of the Eocene palaeanodont Metacheiromys marshi was examined using high-resolution CT scans. The present study represents the first time that CT scans have been conducted on skulls of this extinct fossorial mammal. The bony osteology of the auditory region is described in detail, including the ectotympanic and entotympanic, the petrosal in both tympanic and endocranial views, and the middle ear ossicles. The results of this investigation confirm a number of derived resemblances between palaeanodonts and xenarthrans, including a large entotympanic element in the medial wall of the auditory bulla, the presence of an anteroventral process of the tegmen tympani, and a posttemporal canal. However, the present study also provides novel derived auditory features linking palaeanodonts and pangolins, consistent with current understanding of palaeanodont phylogenetic relationships, including the absence of an ectotympanic styliform process, a posterolaterally oriented aperture to the cochlear fossula, and a convex mallear head / concave incudal head. Several autapomorphic features characterizing the auditory osteology of Metacheiromys are also noted. The presence of a large, spherical mallear head, and of a capacious tympanic cavity extended into sinuses in surrounding bones, likely represent adaptations for fossoriality, consistent with palaeobiological inferences drawn from the postcranial anatomy of Metacheiromys . 
    more » « less
  3. The placental order Dermoptera, which includes two extant species, the Philippine and Sunda flying lemurs, Cynocephalus volans and Galeopterus variegatus, respectively, is generally held to be the sister group of Primates. Yet, little has been reported on their cranial anatomy. Here, the anatomy of the ear region is described and illustrated for a juvenile and adult C. volans based on CT scans. The inclusion of a juvenile is essential as nearly all cranial sutures are fused in the adult. Soft tissues are reconstructed based on sectioned histological pre- and postnatal specimens previously reported by the author. Numerous unusual features are identified, including: a small parasphenoid beneath the basisphenoid, a tensor tympani fossa on the epitympanic wing of the squamosal, a cavum supracochleare for the geniculate ganglion of the facial nerve that is not enclosed in the petrosal bone, a secondary facial foramen between the petrosal and squamosal, a secondary posttemporal foramen leading to the primary one, a subarcuate fossa that is floored in part by a large contribution from the squamosal, a body of the incus larger than the head of the malleus, and a crus longum of the incus that lacks an osseous connection to the lenticular process. Documentation of the anatomy of the Philippine flying lemur ear region is an essential first step in morphological phylogenetic analyses where features of the basicranium are widely sampled. 
    more » « less
  4. null (Ed.)
    A small piece of cartilage or bone, the element of Paaw, occurs in the tendon of the stapedius muscle in some extant marsupial and placental mammals. It has been nearly a century since the last comprehensive treatment of the distribution of the element of Paaw in mammals. The current report updates knowledge on this structure by synthesizing the subsequent literature and providing new observations of extant marsupials from the collections of the Section of Mammals, Carnegie Museum of Natural History, and two online resources for CT scanned data: DigiMorph.org and MorphoSource.org. We found an element of Paaw in some representatives of all seven extant marsupial orders: Didelphimorphia, Microbiotheria, Notoryctemorphia, Peramelemorphia, Paucituberculata, Dasyuromorphia, and Diprotodontia. In the first four orders, the element is substantial, longer than the long axis of the fenestra vestiuli (oval window), which holds the stapedial footplate; it is smaller than the long axis of the fenestra vestibuli in Paucituberculata and we do not have measures to report for the last two orders. In most marsupials examined, the element of Paaw contacts the petrosal behind the oval window, suggesting it functions as a sesamoid bone, increasing the lever arm of the stapedius muscle. Although there is some variability in the presence of the bone both between and within individual museum specimens, we interpret this as the result of preparation techniques rather than true variation. To place the element of Paaw in its anatomical context, we describe in detail the ear region and middle-ear auditory apparatus of the gray four-eyed opossum, Philander opossum (Linnaeus, 1758), a didelphid from Central and South America, based on a CT scanned specimen from Carnegie Museum of Natural History. It has an ossified element of Paaw with a volume greater than the stapes. Comparisons are made with petrosals of Didelphis marsupialis Linnaeus, 1758, and Monodelphis domestica (Wagner, 1842), also based on CT scanned specimens. 
    more » « less
  5. ABSTRACT The study of primate auditory morphology is a significant area of interest for comparative anatomists, given the phylogenetic relationships that link primate hearing and the morphology of these auditory structures. Extensive literature addresses the form‐to‐function relationship of the auditory system (outer, middle, and inner ear) in primates and, by extension, provides insight into the auditory system of extinct primates and even modern humans. We add to this literature by describing the ontogenetic trajectory of the middle ear cavity and ossicular chain (malleus, incus, and stapes) due to their critical role in relaying auditory stimuli for interpretation. We examined middle ear morphology in neonatal primates and adult primates using a taxonomically broad sample. We focused primarily on nocturnal primate taxa (Daubentonia,Loris,Galago,Aotus, andTarsier), which are underrepresented in the literature. However, we also included three diurnal taxa (Macaca,Lemur, andSaguinus). Using 3D Slicer, we visualized middle ear structures in three dimensions using conventional micro CT data informed by diffusible iodine‐based contrast‐enhanced CT (diceCT) data. We illustrated how spatial relationships between otic elements, such as the various epitympanic sinuses of the middle ear and the auditory ossicles, vary throughout ontogeny. Our major findings include that the central tympanic cavity scaled with negative allometry in all taxa and that the accessory cavities scaled with isometry or positive allometry in most taxa. Despite these changes in chamber size, the size of the ear ossicles remained relatively consistent through ontogeny in most taxa. We confirmed our expectation that anthropoids exhibit an increase in the complexity of accessory cavities throughout ontogeny, mirroring the exponential pneumatization of the face in anthropoids. These findings provide an ontogenetic perspective and reveal further functional complexities of the middle ear as a conduit for sound proliferation and as a pressure regulator. 
    more » « less