skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Event2Mind: Commonsense Inference on Events, Intents, and Reactions
We investigate a new commonsense inference task: given an event described in a short free-form text ("X drinks coffee in the morning"), a system reasons about the likely intents ("X wants to stay awake") and reactions ("X feels alert") of the event's participants. To support this study, we construct a new crowdsourced corpus of 25,000 event phrases covering a diverse range of everyday events and situations. We report baseline performance on this task, demonstrating that neural encoder-decoder models can successfully compose embedding representations of previously unseen events and reason about the likely intents and reactions of the event participants. In addition, we demonstrate how commonsense inference on people's intents and reactions can help unveil the implicit gender inequality prevalent in modern movie scripts.  more » « less
Award ID(s):
1714566
PAR ID:
10074107
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation. 
    more » « less
  2. Proc. 2023 The Web Conf. (Ed.)
    Massive and fast-evolving news articles keep emerging on the web. To efectively summarize and provide concise insights into real-world events, we propose a new event knowledge extraction task Event Chain Mining in this paper. Given multiple documents abouta super event, it aims to mine a series of salient events in temporal order. For example, the event chain of super event Mexico Earthquake in 2017 is {earthquake hit Mexico, destroy houses, kill people,block roads}. This task can help readers capture the gist of textsquickly, thereby improving reading efciency and deepening text comprehension. To address this task, we regard an event as a cluster of diferent mentions of similar meanings. In this way, we can identify the diferent expressions of events, enrich their semantic knowledge and replenish relation information among them. Taking events as the basic unit, we present a novel unsupervised framework, EMiner. Specifcally, we extract event mentions from texts and merge them with similar meanings into a cluster as a single event. By jointly incorporating both content and commonsense, essential events are then selected and arranged chronologically to form an event chain. Meanwhile, we annotate a multi-document benchmark to build a comprehensive testbed for the proposed task. Extensive experiments are conducted to verify the efectiveness of EMiner in terms of both automatic and human evaluations. 
    more » « less
  3. As humans, we can modify our assumptions about a scene by imagining alternative objects or concepts in our minds. For example, we can easily anticipate the implications of the sun being overcast by rain clouds (e.g., the street will get wet) and accordingly prepare for that. In this paper, we introduce a new task/dataset called Commonsense Reasoning for Counterfactual Scene Imagination (COSIM) which is designed to evaluate the ability of AI systems to reason about scene change imagination. In this task/dataset, models are given an image and an initial question-response pair about the image. Next, a counterfactual imagined scene change (in textual form) is applied, and the model has to predict the new response to the initial question based on this scene change. We collect 3.5K high-quality and challenging data instances, with each instance consisting of an image, a commonsense question with a response, a description of a counterfactual change, a new response to the question, and three distractor responses. Our dataset contains various complex scene change types (such as object addition/removal/state change, event description, environment change, etc.) that require models to imagine many different scenarios and reason about the changed scenes. We present a baseline model based on a vision-language Transformer (i.e., LXMERT) and ablation studies. Through human evaluation, we demonstrate a large human-model performance gap, suggesting room for promising future work on this challenging counterfactual, scene imagination task. 
    more » « less
  4. Natural language often describes events in different granularities, such that more coarse-grained (goal) events can often be decomposed into fine-grained sequences of (step) events. A critical but overlooked challenge in understanding an event process lies in the fact that the step events are not equally important to the central goal. In this paper, we seek to fill this gap by studying how well current models can understand the essentiality of different step events towards a goal event. As discussed by cognitive studies, such an ability enables the machine to mimic human’s commonsense reasoning about preconditions and necessary efforts of daily-life tasks. Our work contributes with a high-quality corpus of (goal, step) pairs from a community guideline website WikiHow, where the steps are manually annotated with their essentiality w.r.t. the goal. The high IAA indicates that humans have a consistent understanding of the events. Despite evaluating various statistical and massive pre-trained NLU models, we observe that existing SOTA models all perform drastically behind humans, indicating the need for future investigation of this crucial yet challenging task. 
    more » « less
  5. null (Ed.)
    Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent{'}s actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset {``}Video-to-Commonsense (V2C){''} that contains {\textasciitilde}9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions. 
    more » « less