We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.
more »
« less
ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning
We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.
more »
« less
- Award ID(s):
- 1714566
- PAR ID:
- 10107990
- Date Published:
- Journal Name:
- AAAI
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method INCPROMPT to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, INCPROMPT can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ∼10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability.more » « less
-
Understanding narratives requires reasoning about implicit world knowledge related to the causes, effects, and states of situations described in text. At the core of this challenge is how to access contextually relevant knowledge on demand and reason over it. In this paper, we present initial studies toward zero-shot commonsense question answering by formulating the task as inference over dynamically generated commonsense knowledge graphs. In contrast to previous studies for knowledge integration that rely on retrieval of existing knowledge from static knowledge graphs, our study requires commonsense knowledge integration where contextually relevant knowledge is often not present in existing knowledge bases. Therefore, we present a novel approach that generates contextually-relevant symbolic knowledge structures on demand using generative neural commonsense knowledge models. Empirical results on two datasets demonstrate the efficacy of our neuro-symbolic approach for dynamically constructing knowledge graphs for reasoning. Our approach achieves significant performance boosts over pretrained language models and vanilla knowledge models, all while providing interpretable reasoning paths for its predictions.more » « less
-
Proc. 2023 The Web Conf. (Ed.)Massive and fast-evolving news articles keep emerging on the web. To efectively summarize and provide concise insights into real-world events, we propose a new event knowledge extraction task Event Chain Mining in this paper. Given multiple documents abouta super event, it aims to mine a series of salient events in temporal order. For example, the event chain of super event Mexico Earthquake in 2017 is {earthquake hit Mexico, destroy houses, kill people,block roads}. This task can help readers capture the gist of textsquickly, thereby improving reading efciency and deepening text comprehension. To address this task, we regard an event as a cluster of diferent mentions of similar meanings. In this way, we can identify the diferent expressions of events, enrich their semantic knowledge and replenish relation information among them. Taking events as the basic unit, we present a novel unsupervised framework, EMiner. Specifcally, we extract event mentions from texts and merge them with similar meanings into a cluster as a single event. By jointly incorporating both content and commonsense, essential events are then selected and arranged chronologically to form an event chain. Meanwhile, we annotate a multi-document benchmark to build a comprehensive testbed for the proposed task. Extensive experiments are conducted to verify the efectiveness of EMiner in terms of both automatic and human evaluations.more » « less
-
Exploiting relationships between objects for image and video captioning has received increasing attention. Most existing methods depend heavily on pre-trained detectors of objects and their relationships, and thus may not work well when facing detection challenges such as heavy occlusion, tiny-size objects, and long-tail classes. In this paper, we propose a joint commonsense and relation reasoning method that exploits prior knowledge for image and video captioning without relying on any detectors. The prior knowledge provides semantic correlations and constraints between objects, serving as guidance to build semantic graphs that summarize object relationships, some of which cannot be directly perceived from images or videos. Particularly, our method is implemented by an iterative learning algorithm that alternates between 1) commonsense reasoning for embedding visual regions into the semantic space to build a semantic graph and 2) relation reasoning for encoding semantic graphs to generate sentences. Experiments on several benchmark datasets validate the effectiveness of our prior knowledge-based approach.more » « less
An official website of the United States government

