skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LES Simulation of turbulent supercritical CO2 heat transfer in microchannels
Although supercritical CO2 (sCO2) heat transfer has been employed in industrial process since the 1960s, the underlying transport phenomenon in high-flux microscale geometries, as could be employed in concentrating solar receivers, is poorly understood. To date, nearly all experimental studies and simulations of supercritical convective heat transfer have focused on large diameter vertical channel and tube bundle flows, which may differ dramatically from microscale supercritical convection. Computational studies have primarily employed Reynolds averaged (RANS) turbulence modeling approaches, which may not capture effects from the sharply varying property trends of supercritical fluids. In this study, large eddy simulation (LES) turbulence modeling techniques are employed to study heat transfer characteristics of sCO2 in microscale heat exchangers. The simulation geometry consists of a microchannel of 750×737 μm cross-section and 5 mm length, heated from all four sides. Simulation cases are evaluated at reduced pressure P_r = 1.1, mass flux G = 1000 kg/m^2-s, heat flux q'' = 1.7 − 8.9 W/cm^2 , and varying inlet temperature: 20 − 100℃. Computational results reveal thermal transport mechanisms specific to microscale sCO2 flows. Results have been compared with available supercritical convection correlations to identify the most applicable heat transfer models for engineering of microchannel sCO2 heat exchangers.  more » « less
Award ID(s):
1604538
PAR ID:
10074126
Author(s) / Creator(s):
;
Date Published:
Journal Name:
6th International Supercritical CO2 Power Cycles Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study is part of the preliminary experimental investigations designed to assess the feasibility of using supercritical carbon dioxide (sCO2) in the vicinity of its critical point for thermal management applications. In the present study, sCO2 was used as a working fluid in a diffusion bonded 316/316L stainless steel test section having staggered micro pin fin array flow passages of hydraulic diameter 679 µm (0.679 mm). The test section was subjected to a single wall non-uniform heat flux boundary condition and was operated in a horizontal orientation. The primary objective was to characterize the heat transfer performance of sCO2 as it flows through the staggered pin fin array for experimental conditions that span its critical and pseudocritical point. Data analysis methods employing 2-D and 3-D heat transfer models of the test section were used to calculate the average heat transfer coefficients for a given set of experimental conditions. Experiments were conducted by varying the inlet temperature (18 ≤ T_in ≤ 50 °C) and for fixed mass flux (300 kg m-2 s-1), heat flux (40 W cm-2), and reduced pressure (1.1). Experimental data were also compared against the predictions of a correlation proposed for single phase flows in microchannel staggered diamond pin arrays. The correlation predicted the data within 4.3 % when the ratio, T_Bulk/T_PC exceeded 1. It was also found that the enhancement in the heat transfer, a result of employing staggered pin array flow geometry instead of microchannels, carries a commensurate penalty in pressure drop. 
    more » « less
  2. In the present investigation, high resolution large eddy simulations (LES) of sCO2 vertical upward flows in microchannels are performed at high mass fluxes (G = 1000 kg/m^2-s) and moderate heat fluxes (q'' = 1.6 − 8.7 W/cm^2), and flow inlet temperature in the range of T = 20 − 100 ℃ to predict sCO2 heat transfer coefficients inside and outside pseudocritical region. Results are compared with our prior computational study of horizontal microchannels at similar thermophysical conditions to determine the effect of channel orientation on possible enhancement or deterioration of heat transfer. Results are also compared with available empirical supercritical heat transfer correlations to assess their applicability at these working conditions. 
    more » « less
  3. Abstract Supercritical Carbon dioxide (sCO2) power cycles are rapidly developing and gaining popularity in waste heat recovery systems, as primary power cycles for a variety of heat sources such as nuclear, or as a stand-alone power cycle where fossil fuels are combusted. Akin to conventional gas turbines, sCO2-powered systems are pushing the boundaries for firing temperatures for higher efficiencies. Direct oxy-fired sCO2 systems will demand internal cooling of the airfoils for safe and reliable operations. Gas turbine cooling technology can be leveraged for that purpose. However, two key differences exist. First, the coolant medium is sCO2 instead of air, and second, sCO2 airfoils are much smaller compared to power-generation gas turbines. Novel AM manufacturing techniques promise advanced internal cooling geometries. This paper investigates a novel trailing edge cooling design to replace conventional pin fin arrays. Here, a lattice structure with microchannels is introduced. The study presents the changes in heat transfer due to the substitution of the heat transfer medium and the new geometry. The component is assumed to be printed Inconel 718. Based on an oxy-fired combustion sCO2 power cycle, coolant temperature and pressure and hot gas path temperature and pressure are chosen. The converging trailing edge duct is simulated in StarCCM+ using COOLPROP for sCO2 properties as a conjugate heat transfer model. 
    more » « less
  4. The traditional approach of using the Monin–Obukhov similarity theory (MOST) to model near-surface processes in large-eddy simulations (LESs) can lead to significant errors in natural convection. In this study, we propose an alternative approach based on feedforward neural networks (FNNs) trained on output from direct numerical simulation (DNS). To evaluate the performance, we conduct both a priori and a posteriori tests. In the a priori (offline) tests, we compare the statistics of the surface shear stress and heat flux, computed from filtered DNS input variables, to the stress and flux obtained from the filtered DNS. Additionally, we investigate the importance of various input features using the Shapley additive explanations value and the conditional average of the filter grid cells. In the a posteriori (online) tests, we implement the trained models in the System for Atmospheric Modeling (SAM) LES and compare the LES-generated surface shear stress and heat flux with those in the DNS. Our findings reveal that vertical velocity, a traditionally overlooked flow quantity, is one of the most important input features for determining the wall fluxes. Increasing the number of input features improves the a priori test results but does not always improve the model performance in the a posteriori tests because of the differences in input variables between the LES and DNS. Last, we show that physics-aware FNN models trained with logarithmic and scaled parameters can well extrapolate to more intense convection scenarios than in the training dataset, whereas those trained with primitive flow quantities cannot. Significance StatementThe traditional near-surface turbulence model, based on a shear-dominated boundary layer flow, does not represent near-surface turbulence in natural convection. Using a feedforward neural network (FNN), we can construct a more accurate model that better represents the near-surface turbulence in various flows and reveals previously overlooked controlling factors and process interactions. Our study shows that the FNN-generated models outperform the traditional model and highlight the importance of the near-surface vertical velocity. Furthermore, the physics-aware FNN models exhibit the potential to extrapolate to convective flows of various intensities beyond the range of the training dataset, suggesting their broader applicability for more accurate modeling of near-surface turbulence. 
    more » « less
  5. Context.The mechanisms regulating the transport and energization of charged particles in space and astrophysical plasmas are still debated. Plasma turbulence is known to be a powerful particle accelerator. Large-scale structures, including flux ropes and plasmoids, may contribute to confining particles and lead to fast particle energization. These structures may also modify the properties of the turbulent, nonlinear transfer across scales. Aims.We aim to investigate how large-scale flux ropes are perturbed and, simultaneously, how they influence the nonlinear transfer of turbulent energy toward smaller scales. We then intend to address how these structures affect particle transport and energization. Methods.We adopted magnetohydrodynamic simulations perturbing a large-scale flux rope in solar-wind conditions and possibly triggering turbulence. Then, we employed test-particle methods to investigate particle transport and energization in the perturbed flux rope. Results.The large-scale helical flux rope inhibits the turbulent cascade toward smaller scales, especially if the amplitude of the initial perturbations is not large (∼5%). In this case, particle transport is inhibited inside the structure. Fast particle acceleration occurs in association with phases of trapped motion within the large-scale flux rope. 
    more » « less