skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoparticle Based Printed Sensors on Paper for Detecting Chemical Species
There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis.  more » « less
Award ID(s):
1640669
PAR ID:
10074130
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2017 IEEE 67th Electronic Components and Technology Conference (ECTC)
Page Range / eLocation ID:
764 to 771
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Printing techniques using nanomaterials have emerged as a versatile tool for fast prototyping and potentially large‐scale manufacturing of functional devices. Surfactants play a significant role in many printing processes due to their ability to reduce interfacial tension between ink solvents and nanoparticles and thus improve ink colloidal stability. Here, a colloidal graphene quantum dot (GQD)‐based nanosurfactant is reported to stabilize various types of 2D materials in aqueous inks. In particular, a graphene ink with superior colloidal stability is demonstrated by GQD nanosurfactants via the π–π stacking interaction, leading to the printing of multiple high‐resolution patterns on various substrates using a single printing pass. It is found that nanosurfactants can significantly improve the mechanical stability of the printed graphene films compared with those of conventional molecular surfactant, as evidenced by 100 taping, 100 scratching, and 1000 bending cycles. Additionally, the printed composite film exhibits improved photoconductance using UV light with 400 nm wavelength, arising from excitation across the nanosurfactant bandgap. Taking advantage of the 3D conformal aerosol jet printing technique, a series of UV sensors of heterogeneous structures are directly printed on 2D flat and 3D spherical substrates, demonstrating the potential of manufacturing geometrically versatile devices based on nanosurfactant inks. 
    more » « less
  2. Abstract Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1at a current density of 0.5 A g−1and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance. 
    more » « less
  3. Abstract The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine. 
    more » « less
  4. In recent years, inkjet printing has become a popular form for creating sensors and antennas. These devices are fabricated using different materials with inkjet printing using various (conductive, oxide, biological) inks on predominantly flexible substrate. This form of fabrication has attracted much attention for a variety of reasons such as relatively cheap cost of manufacturing and materials, as well as the ease of use and high customization. These devices also provide a lighter frame and added flexibility allowing them to be incorporated as devices on non-planar surfaces. It is also possible for inkjet printing to be used as a sustainable manufacturing method, providing a method of reducing electronic waste. In this article, several topics related to inkjet printing are covered. These topics include a general overview of the fabrication process of inkjet devices through an inkjet printer, recent applications of inkjet-printed sensors, applications of inkjet-printed antennae, challenges in inkjet printing, and an outlook on the inkjet printing. In the fabrication section, the different materials and printing process are explored. Topics covered in the application section include gas sensors, biomedical sensors, pressure sensors, temperature sensors, glucose sensors, and more. In the inkjet antennas portion of the article, RFID tagging and 5G applications are highlighted. The main challenges covered are specific to fabrication that are being currently addressed. 
    more » « less
  5. Abstract The growing demand for flexible and wearable hybrid electronics has triggered the need for advanced manufacturing techniques with versatile printing capabilities. Complex ink formulations, use of surfactants/contaminants, limited source materials, and the need for high‐temperature heat treatments for sintering are major issues facing the current inkjet and aerosol printing methods. Here, the nanomanufacturing of flexible hybrid electronics (FHE) by dry printing silver and indium tin oxide on flexible substrates using a novel laser‐based additive nanomanufacturing process is reported. The electrical resistance of the printed lines is tailored during the print process by tuning the geometry and structure of the printed samples. Different FHE designs are fabricated and tested to check the performance of the devices. Mechanical reliability tests including cycling, bending, and stretching confirm the expected performance of the printed samples under different strain levels. This transformative liquid‐free process allows the on‐demand formation and in situ laser crystallization of nanoparticles for printing pure materials for future flexible and wearable electronics and sensors. 
    more » « less