skip to main content

Title: Nanoparticle Based Printed Sensors on Paper for Detecting Chemical Species
There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating more » interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis. « less
; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
2017 IEEE 67th Electronic Components and Technology Conference (ECTC)
Page Range or eLocation-ID:
764 to 771
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Printing techniques using nanomaterials have emerged as a versatile tool for fast prototyping and potentially large‐scale manufacturing of functional devices. Surfactants play a significant role in many printing processes due to their ability to reduce interfacial tension between ink solvents and nanoparticles and thus improve ink colloidal stability. Here, a colloidal graphene quantum dot (GQD)‐based nanosurfactant is reported to stabilize various types of 2D materials in aqueous inks. In particular, a graphene ink with superior colloidal stability is demonstrated by GQD nanosurfactants via the π–π stacking interaction, leading to the printing of multiple high‐resolution patterns on various substrates using a single printing pass. It is found that nanosurfactants can significantly improve the mechanical stability of the printed graphene films compared with those of conventional molecular surfactant, as evidenced by 100 taping, 100 scratching, and 1000 bending cycles. Additionally, the printed composite film exhibits improved photoconductance using UV light with 400 nm wavelength, arising from excitation across the nanosurfactant bandgap. Taking advantage of the 3D conformal aerosol jet printing technique, a series of UV sensors of heterogeneous structures are directly printed on 2D flat and 3D spherical substrates, demonstrating the potential of manufacturing geometrically versatile devices based on nanosurfactant inks.

  2. Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing (AM) method, emerging as the process of choice for the fabrication of a broad spectrum of electronics, such as sensors, transistors, and optoelectronic devices. However, AJP is a highly complex process, prone to intrinsic gradual drifts. Consequently, real-time process monitoring and control in AJP is a bourgeoning need. The goal of this work is to establish an integrated, smart platform for in situ and real-time monitoring of the functional properties of AJ-printed electronics. In pursuit of this goal, the objective is to forward a multiple-input, single-output (MISO) intelligent learning model—based on sparse representation classification (SRC)—to estimate the functional properties (e.g., resistance) in situ as well as in real-time. The aim is to classify the resistance of printed electronic traces (lines) as a function of AJP process parameters and the trace morphology characteristics (e.g., line width, thickness, and cross-sectional area (CSA)). To realize this objective, line morphology is captured using a series of images, acquired: (i) in situ via an integrated high-resolution imaging system and (ii) in real-time via the AJP standard process monitor camera. Utilizing image processing algorithms developed in-house, a wide range of 2D and 3D morphology features aremore »extracted, constituting the primary source of data for the training, validation, and testing of the SRC model. The four-point probe method (also known as Kelvin sensing) is used to measure the resistance of the deposited traces and as a result, to define a priori class labels. The results of this study exhibited that using the presented approach, the resistance (and potentially, other functional properties) of printed electronics can be estimated both in situ and in real-time with an accuracy of ≥ 90%.« less
  3. Abstract

    The growing demand for flexible and wearable hybrid electronics has triggered the need for advanced manufacturing techniques with versatile printing capabilities. Complex ink formulations, use of surfactants/contaminants, limited source materials, and the need for high‐temperature heat treatments for sintering are major issues facing the current inkjet and aerosol printing methods. Here, the nanomanufacturing of flexible hybrid electronics (FHE) by dry printing silver and indium tin oxide on flexible substrates using a novel laser‐based additive nanomanufacturing process is reported. The electrical resistance of the printed lines is tailored during the print process by tuning the geometry and structure of the printed samples. Different FHE designs are fabricated and tested to check the performance of the devices. Mechanical reliability tests including cycling, bending, and stretching confirm the expected performance of the printed samples under different strain levels. This transformative liquid‐free process allows the on‐demand formation and in situ laser crystallization of nanoparticles for printing pure materials for future flexible and wearable electronics and sensors.

  4. Abstract

    Recent developments in stretchable electronics hold promise to advance wearable technologies for health monitoring. Emerging techniques allow soft materials to serve as substrates and packaging for electronics, enabling devices to comply with and conform to the body, unlike conventional rigid electronics. However, few stretchable electronic devices achieve the high integration densities that are possible using conventional substrates, such as printed rigid or flexible circuit boards. Here, a new manufacturing method is presented for wearable soft health monitoring devices with high integration densities. It is shown how to fabricate soft electronics on rigid carrier substrates using microfabrication techniques in tandem with strain relief features. Together, these make it possible to integrate a large variety of surface mount components in complex stretchable circuits on thin polymer substrates. The method is largely compatible with existing industrial manufacturing processes. The promise of these methods is demonstrated by realizing skin‐interfaced devices for multimodal physiological data capture via multiwavelength optoelectronic sensor arrays comprised of light emitting diodes and phototransistors. The devices provide high signal‐to‐noise ratio measurements of peripheral hemodynamics, illustrating the promise of soft electronics for wearable health monitoring applications.

  5. Abstract

    Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices.