Abstract Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4‐ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2 mS cm−1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans. 
                        more » 
                        « less   
                    
                            
                            In situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) for peripheral nerve interfaces
                        
                    
    
            The goal of this study was to perform in situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in peripheral nerves to create a soft, precisely located injectable conductive polymer electrode for bi-directional communication. Intraneural PEDOT polymerization was performed to target both outer and inner fascicles via custom fabricated 3D printed cuff electrodes and monomer injection strategies using a combination electrode-cannula system. Electrochemistry, histology, and laser light sheet microscopy revealed the presence of PEDOT at specified locations inside of peripheral nerve. This work demonstrates the potential for using in situ PEDOT electrodeposition as an injectable electrode for recording and stimulation of peripheral nerves. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10074144
- Date Published:
- Journal Name:
- MRS Communications
- ISSN:
- 2159-6859
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract Despite occurrence of neonatal hypoxia and peripheral nerve injuries in complicated birthing scenarios, the effect of hypoxia on the biomechanical responses of neonatal peripheral nerves is not studied. In this study, neonatal brachial plexus and tibial nerves, obtained from eight normal and eight hypoxic 3-5 days old piglets, were tested in uniaxial tension until failure at a rate of 0.01 mm/s or 10 mm/s. Failure load, stress, and modulus of elasticity were reported to be significantly lower in hypoxic neonatal brachial plexus (BP) and tibial nerves than respective normal tissue at both 0.01 and 10 mm/s rates. Failure strain was significantly lower in the hypoxic neonatal BP nerves only at 10 mm/s rate when compared to normal BP nerve. This is the first available data that indicates weaker mechanical behavior of hypoxic neonatal peripheral nerves as compared to normal tissue, and offers an understanding of the biomechanical responses of peripheral nerves of hypoxic neonatal piglets.more » « less
- 
            Abstract Background Characterizing the biomechanical failure responses of neonatal peripheral nerves is critical in understanding stretch-related peripheral nerve injury mechanisms in neonates. Objective This in vitro study investigated the effects of prestretch magnitude and duration on the biomechanical failure behavior of neonatal piglet brachial plexus (BP) and tibial nerves. Methods BP and tibial nerves from 32 neonatal piglets were harvested and prestretched to 0, 10, or 20% strain for 90 or 300 seconds. These prestretched samples were then subjected to tensile loading until failure. Failure stress and strain were calculated from the obtained load-displacement data. Results Prestretch magnitude significantly affected failure stress but not the failure strain. BP nerves prestretched to 10 or 20% strain, exhibiting significantly lower failure stress than those prestretched to 0% strain for both prestretch durations (90 and 300 seconds). Likewise, tibial nerves prestretched to 10 or 20% strain for 300 seconds, exhibiting significantly lower failure stress than the 0% prestretch group. An effect of prestretch duration on failure stress was also observed in the BP nerves when subjected to 20% prestretch strain such that the failure stress was significantly lower for 300 seconds group than 90 seconds group. No significant differences in the failure strains were observed. When comparing BP and tibial nerve failure responses, significantly higher failure stress was reported in tibial nerve prestretched to 20% strain for 300 seconds than BP nerve. Conclusion These data suggest that neonatal peripheral nerves exhibit lower injury thresholds with increasing prestretch magnitude and duration while exhibiting regional differences.more » « less
- 
            Objective: Haptic perception is an important component of bidirectional human-machine interactions that allow users to better interact with their environment. Artificial haptic sensation along an individual’s hand can be evoked via noninvasive electrical nerve stimulation; however, continuous stimulation can result in adaptation of sensory perception over time. In this study, we sought to quantify the adaptation profile via the change in perceived sensation intensity over time. Approach: Noninvasive stimulation of the peripheral nerve bundles evoked haptic perception using a 2x5 electrode grid placed along the medial side of the upper arm near the median and ulnar nerves. An electrode pair that evoked haptic sensation along the forearm and hand was selected. During a trial of 110-s of continuous stimulation, a constant stimulus amplitude just below the motor threshold was delivered. Each subject was instructed to press on a force transducer producing a force amplitude matched with the perceived intensity of haptic sensation. Main Findings: A force decay (i.e., intensity of sensation) was observed in all 7 subjects. Variations in the rate of decay and the start of decay across subjects were also observed. Significance: The preliminary findings established the sensory adaptation profile of peripheral nerve stimulation. Accounting for these subject-specific profiles of adaptation can allow for more stable communication between a robotic device and a user. Additionally, sensory adaptation characterization can promote the development of new stimulation strategies that can mitigate these observed adaptations, allowing for a better and more stable human-machine interaction experience.more » « less
- 
            null (Ed.)Organometallic halide perovskite (MAPPbBr 3 ), Rust-based Vapor Phase Polymerization (RVPP)-PEDOT hole transporting layers and (RVPP-PEDOT)/MAPPbBr 3 dual-layer, deposited on fluorine doped tin oxide glass were studied at room temperature using steady-state absorption, time-resolved photoluminescence imaging and femtosecond time-resolved absorption spectroscopy. Application of these techniques in conjunction with diverse excitation intensities allowed determination of various optoelectronic properties of the perovskite film and the time constant of the hole extraction process. Spectral reconstruction of the bandedge absorption spectrum using Elliot's formula enabled separation of the exciton band. The binding energy of the exciton was determined to be 19 meV and the bandgap energy of the perovskite film was 2.37 eV. Subsequent time-resolved photoluminescence studies of the perovskite film performed using a very weak excitation intensity followed by a global analysis of the data revealed monomolecular recombination dynamics of charge carriers occurring with an amplitude weighted lifetime of 3.2 ns. Femtosecond time-resolved transient absorption of the film performed after excitation intensity spanning a range of over two orders of magnitude enabled determining the rate constant of bimolecular recombination and was found to be 2.6 × 10 −10 cm 3 s −1 . Application of numerous high intensity excitations enabled observation of band filling effect and application of the Burstein–Moss model allowed to determine the reduced effective mass of photoexcited electron–hole pair in MAPPbBr 3 film to be 0.19 rest mass of the electron. Finally, application of transient absorption on RVPP-PEDOT/MAPPbBr 3 enabled determination of a 0.4 ps time constant for the MAPPbBr 3 -to-PEDOT hole extraction process.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    