skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectroscopic investigations of electron and hole dynamics in MAPbBr 3 perovskite film and carrier extraction to PEDOT hole transport layer
Organometallic halide perovskite (MAPPbBr 3 ), Rust-based Vapor Phase Polymerization (RVPP)-PEDOT hole transporting layers and (RVPP-PEDOT)/MAPPbBr 3 dual-layer, deposited on fluorine doped tin oxide glass were studied at room temperature using steady-state absorption, time-resolved photoluminescence imaging and femtosecond time-resolved absorption spectroscopy. Application of these techniques in conjunction with diverse excitation intensities allowed determination of various optoelectronic properties of the perovskite film and the time constant of the hole extraction process. Spectral reconstruction of the bandedge absorption spectrum using Elliot's formula enabled separation of the exciton band. The binding energy of the exciton was determined to be 19 meV and the bandgap energy of the perovskite film was 2.37 eV. Subsequent time-resolved photoluminescence studies of the perovskite film performed using a very weak excitation intensity followed by a global analysis of the data revealed monomolecular recombination dynamics of charge carriers occurring with an amplitude weighted lifetime of 3.2 ns. Femtosecond time-resolved transient absorption of the film performed after excitation intensity spanning a range of over two orders of magnitude enabled determining the rate constant of bimolecular recombination and was found to be 2.6 × 10 −10 cm 3 s −1 . Application of numerous high intensity excitations enabled observation of band filling effect and application of the Burstein–Moss model allowed to determine the reduced effective mass of photoexcited electron–hole pair in MAPPbBr 3 film to be 0.19 rest mass of the electron. Finally, application of transient absorption on RVPP-PEDOT/MAPPbBr 3 enabled determination of a 0.4 ps time constant for the MAPPbBr 3 -to-PEDOT hole extraction process.  more » « less
Award ID(s):
1806147
PAR ID:
10253123
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
23
ISSN:
1463-9076
Page Range / eLocation ID:
13011 to 13022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exciton dynamics o perovskite nanoclusters has been investigated or the rst time using emtosecond transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopy. The TA results show two photoinduced absorption signals at 420 and 461 nm and a photoinduced bleach (PB) signal at 448 nm. The analysis o the PB recovery kinetic decay and kinetic model uncovered multiple processes contributing to electron−hole recombination. The ast component (∼8 ps) is attributed to vibrational relaxation within the initial excited state, and the medium component (∼60 ps) is attributed to shallow carrier trapping. The slow component is attributed to deep carrier trapping rom the initial conduction band edge (∼666 ps) and the shallow trap state (∼40 ps). The TRPL reveals longer time dynamics, with modeled lietimes o 6.6 and 93 ns attributed to recombination through the deep trap state and direct band edge recombination, respectively. The signicant role o exciton trapping processes in the dynamics indicates that these highly conned nanoclusters have deect-rich suraces. 
    more » « less
  2. As conventional electronic materials approach their physical limits, the application of ultrafast optical fields to access transient states of matter cap- tures imagination. The inversion symmetry governs the optical parity selection rule, differentiating between accessible and inaccessible states of matter. To circumvent parity-forbidden transitions, the common practice is to break the inversion symmetry by material design or external fields. Here we report how the application of femtosecond ultraviolet pulses can energize a parity-forbidden dark exciton state in black phosphorus while maintaining its intrinsic material symmetry. Unlike its conventional bandgap absorption in visible-to-infrared, femtosecond ultraviolet excitation turns on efficient Coulomb scattering, promoting carrier multiplication and electronic heating to ~3000 K, and consequently populating its parity-forbidden states. Interfero- metric time- and angle-resolved two-photon photoemission spectroscopy reveals dark exciton dynamics of black phosphorus on ~100 fs time scale and its anisotropic wavefunctions in energy-momentum space, illuminating its potential applications in optoelectronics and photochemistry under ultraviolet optical excitation. 
    more » « less
  3. Excitation transfer across the interfaces between graphene, perylenetetracarboxylic diimide (PTCDI), and titanyl phthalocyanine (TiOPc) was studied by using transient absorption and photoluminescence spectroscopy. Both photoluminescence quenching and transient absorption measurements confirm the presence of a type-II interface between PTCDI and TiOPc. While the graphene/PTCDI interface is expected to exhibit type-I behavior, transient absorption measurements indicate that only electrons transfer from PTCDI to graphene, with no evidence of hole transfer. Density functional theory calculations reveal significant ground-state electron transfer from graphene to PTCDI, resulting in band bending that prevents excited holes from transferring from PTCDI to graphene. This feature is exploited in a trilayer heterostructure of graphene/PTCDI/TiOPc, where the spatial separation of photoexcited electrons and holes in graphene and TiOPc, respectively, leads to the formation of long-lived photoexcitations with a lifetime of approximately 500 ps. Furthermore, spatially resolved transient absorption measurements reveal the immobile nature of these excitations, confirming that they are charge-transfer excitons rather than free electrons and holes. These results provide valuable insights into the complex interlayer photoexcitation transfer properties and demonstrate precise control over the layer population and the recombination lifetime of photocarriers in such hybrid heterostructures. 
    more » « less
  4. Abstract Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3(MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3without Nd2+dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 fspins of the Nd2+in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+doping concentration that enhances the coupling between the exciton and Nd2+4 fspins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3
    more » « less
  5. Hydrophobic and long-chain molecule oleylamine is used to modify the spiro-OMeTAD matrix, which is then adopted for the hole-transport layer in perovskite solar cells. It is observed that after moderate doping, the power conversion efficiency of the devices increases from 17.82 (±1.47)% to 20.68 (±0.77)%, with the optimized efficiency of 21.57% (AM 1.5G, 100 mW/cm2). The improved efficiency is ascribed to the favored charge extraction and retarded charge recombination, as reflected by transient photovoltage/photocurrent curves and impedance spectroscopy measurement. In addition, the grazing incidence photoluminescence spectrum reveals that oleylamine doping causes a blue shift of the luminescence peak of the surface layer of the halide perovskite film, while the Mott−Schottky study observes 100 mV increment in the built-in potential, both of which indicate possible defect passivation behavior on the perovskite. Moreover, an accelerated damp test observes that moisture resistance of the device is also upgraded, which is due to the improved hydrophobicity of the spiro-OMeTAD matrix. 
    more » « less