skip to main content


Title: β C–H di-halogenation via iterative hydrogen atom transfer

A radical relay strategy for mono- and di-halogenation (iodination, bromination, and chlorination) of sp3C–H bonds has been developed. This first example of double, geminal C–H functionalization is enabledviaiterative, hydrogen atom transfer (HAT) byin situgenerated imidate radicals.

 
more » « less
Award ID(s):
1654656
NSF-PAR ID:
10074246
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Royal Society of Chemistry (RSC)
Date Published:
Journal Name:
Chemical Science
Volume:
9
Issue:
19
ISSN:
2041-6520
Page Range / eLocation ID:
4500 to 4504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The genusOreochromisis among the most popular of the tilapiine cichlid tribe for aquaculture. However, their temperature and hypoxia tolerance, if tested at all, is usually tested at temperatures of 20–25°C, rather than at the considerably higher temperatures of 30–35°C typical of tropical aquaculture.

    We hypothesized that both larvae and adults of the heat and hypoxia‐adapted Tabasco‐line of the Nile tilapiaOreochromis niloticuswould be relatively hypoxia‐tolerant. Oxygen consumption rate (), Q10and aquatic surface respiration (ASR) was measured using closed respirometry at 2 (c. 0.2 g), 30 (c. 2–5 g), 105c. (10–15 g) and 240 (c. 250 g) days of development, at 25°C, 30°C and 35°C.at 30°C was inversely related to body mass:c. 90 μM O2g−1/h in larvae down toc. 1 μM O2g−1/h in young adults. Q10forwas typical for fish over the range 25–35°C of 1.5–2.0. ASR was exhibited by 50% of the fish at pO2of 15–50 mmHg in a temperature‐dependent fashion. However, the largest adults showed notable ASR only when pO2fell to below 10 mmHg. Remarkably, pcritforwas 12–17 mmHg at 25–30°C and still only 20–25 mmHg across development at 35°C. These values are among the lowest measured for teleost fishes. Noteworthy is that all fish maintain equilibrium, ventilated their gills and showed routine locomotor action for 10–20 min afterceased at near anoxia and when then returned to oxygenated waters, all fish survived, further indicating a remarkable hypoxic tolerance. Remarkably, data assembled forfrom >30 studies showed a > x2000 difference, which we attribute to calculation or conversion errors. Nonetheless, pcritwas very low for allOreochromissp. and lowest in the heat and hypoxia‐adapted Tabasco line.

     
    more » « less
  2. Abstract

    We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1N‐ynamide ligand, [(BDI)V{κ1N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2C,N‐azaalleneyl ligand, [(dBDI)V{κ2N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.

     
    more » « less
  3. Abstract

    We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1N‐ynamide ligand, [(BDI)V{κ1N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2C,N‐azaalleneyl ligand, [(dBDI)V{κ2N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.

     
    more » « less
  4. Abstract

    One of the most fundamental baryonic matter components of galaxies is the neutral atomic hydrogen (Hi). At low redshifts, this component can be traced directly through the 21 cm transition, but to infer the Higas content of the most distant galaxies, a viable tracer is needed. We here investigate the fidelity of the fine-structure transition of the (2P3/22P1/3) transition of singly ionized carbon Ciiat 158μm as a proxy for Hiin a set simulated galaxies atz≈ 6, following the work by Heintz et al. We select 11,125 star-forming galaxies from thesimbasimulations, with far-infrared line emissions postprocessed and modeled within the Sigameframework. We find a strong connection between Ciiand Hi, with the relation between this Cii-to-Hirelation (β[CII]) being anticorrelated with the gas-phase metallicity of the simulated galaxies. We further use these simulations to make predictions for the total baryonic matter content of galaxies atz≈ 6, and specifically the Higas mass fraction. We find mean values ofMH I/M= 1.4 andMH I/Mbar,tot= 0.45. These results provide strong evidence for Hibeing the dominant baryonic matter component by mass in galaxies atz≈ 6.

     
    more » « less
  5. Abstract

    The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 af, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 af, 97–54 %). Complexes3 adare also available from2 adand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 af; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Clare challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 afare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.

     
    more » « less