skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monovalent lanthanide(I) in borozene complexes
Abstract Lanthanide (Ln) elements are generally found in the oxidation state +II or +III, and a few examples of +IV and +V compounds have also been reported. In contrast, monovalent Ln(+I) complexes remain scarce. Here we combine photoelectron spectroscopy and theoretical calculations to study Ln-doped octa-boron clusters (LnB8, Ln = La, Pr, Tb, Tm, Yb) with the rare +I oxidation state. The global minimum of the LnB8species changes fromCstoC7vsymmetry accompanied by an oxidation-state change from +III to +I from the early to late lanthanides. All theC7v-LnB8clusters can be viewed as a monovalent Ln(I) coordinated by a η8-B82−doubly aromatic ligand. The B73−, B82−, and B9series of aromatic boron clusters are analogous to the classical aromatic hydrocarbon molecules, C5H5, C6H6, and C7H7+, respectively, with similar trends of size and charge state and they are named collectively as “borozenes”. Lanthanides with variable oxidation states and magnetic properties may be formed with different borozenes.  more » « less
Award ID(s):
2053541
PAR ID:
10307078
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To expand the range of donor atoms known to stabilize 4fn5d1Ln(ii) ions beyond C, N, and O first row main group donor atoms, the Ln(iii) terphenylthiolate iodides, LnIII(SAriPr6)2I (AriPr6= C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to LnII(SAriPr6)2complexes. 
    more » « less
  2. The 1:1 cocrystal of 5-fluorocytosine (5FC) and 4-hydroxybenzaldehyde (4HB), C4H4FN3O·C7H6O2has been synthesized and its structure characterized by single-crystal X-ray diffraction and Hirshfeld surface analysis. The compound crystallizes in the monoclinicP21/cspace group. A robust supramolecular architecture is stabilized by N—H...O, N—H...N, C—H...O and C—H...F hydrogen bonds, formingR22(8),R44(22),R66(32), andR88(34) ring motifs. The N—H...O and N—H...N hydrogen bonds form strong directional interactions, contributing to theR22(8) andR88(34) motifs through dimeric and extended ring structures. O—H...O interactions link 5FC and 4HB molecules, generating anR66(32) ring that enhances the packing. Weaker C—H...F bonds help form theR44(22) tetrameric motif, supporting the overall three-dimensional supramolecular framework. Additionally, C—F...π interactions between the fluorine atom and the aromatic ring add further to the crystal cohesion. Hirshfeld surface analysis and two-dimensional fingerprint plots confirm that O...H/H...O contacts are the most significant, highlighting the central role of hydrogen bonding in the stability and organization of the crystal structure. 
    more » « less
  3. 2,4,6-Triaminopyrimidine is an interesting and challenging molecule due to the presence of multiple hydrogen-bond donors and acceptors. Its noncovalent interactions with a variety of carboxylic acids provide several supramolecular aggregates with frequently occurring molecular synthons. The present work focuses on the supramolecular interactions of 2,4,6-triaminopyrimidinium 3-(indol-3-yl)propionate–3-(indol-3-yl)propionic acid (1/1), C4H8N5+·C11H10NO2·C11H11NO2, (I), 2,4,6-triaminopyrimidinium 2-(indol-3-yl)acetate, C4H8N5+·C10H8NO2, (II), 2,4,6-triaminopyrimidinium 5-bromothiophene-2-carboxylate, C4H8N5+·C5H2BrO2S, (III), and 2,4,6-triaminopyrimidinium 5-chlorothiophene-2-carboxylate, C4H8N5+·C5H2ClO2S, (IV). All four salts exhibit robust homomeric and heteromericR22(8) ring motifs. Salts (I) and (II) develop sextuple [in (I)] and quadruple [in (I) and (II)] hydrogen-bonded arrays through fused-ring motifs. Salt (II) exhibits a rosette-like architecture. Salt (IV) is isostructural and isomorphous with salt (III), exhibiting an identical crystal structure with a different composition and an identical supramolecular architecture. In salts (III) and (IV), a linear hetero-tetrameric motif is formed and, in addition, both salts exhibit halogen–π interactions which enhance the crystal stability. All four salts develop a supramolecular hydrogen-bonded pattern facilitated by several N—H...O and N—H...N hydrogen bonds with multiple furcated donors and acceptors. 
    more » « less
  4. The investigation of the coordination chemistry of rare-earth metal complexes with cyanide ligands led to the isolation and crystallographic characterization of the Ln III cyanotriphenylborate complexes dichlorido(cyanotriphenylborato-κ N )tetrakis(tetrahydrofuran-κ O )lanthanide(III), [ Ln Cl 2 (C 19 H 15 BN)(C 4 H 8 O) 4 ] [lanthanide ( Ln ) = dysprosium (Dy) and yttrium Y)] from reactions of LnCl 3 , KCN, and NaBPh 4 . Attempts to independently synthesize the tetraethylammonium salt of (NCBPh 3 ) − from BPh 3 and [NEt 4 ][CN] in THF yielded crystals of the phenyl-substituted cyclic borate, tetraethylazanium 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide, C 8 H 20 N + ·C 24 H 20 B 3 O 3 − or [NEt 4 ][B 3 (μ-O) 3 (C 6 H 5 ) 4 ]. The mechanochemical reaction of BPh 3 and [NEt 4 ][CN] without solvent produced crystals of tetraethylazanium cyanodiphenyl-λ 4 -boranyl diphenylborinate, C 8 H 20 N + ·C 25 H 20 B 2 NO − or [NEt 4 ][NCBPh 2 (μ-O)BPh 2 ]. Reaction of BPh 3 and KCN in THF in the presence of 2.2.2-cryptand (crypt) led to a crystal of bis[(2.2.2-cryptand)potassium] 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide cyanomethyldiphenylborate tetrahydrofuran disolvate, 2C 18 H 36 KN 2 O 6 + ·C 24 H 20 B 3 O 3 − ·C 14 H 13 BN − ·2C 4 H 8 O or [K(crypt)] 2 [B 3 (μ-O) 3 (C 6 H 5 ) 4 ][NCBPh 2 Me]·2THF. The [NCBPh 2 (μ-O)BPh 2 ] 1− and (NCBPh 2 Me) 1− anions have not been structurally characterized previously. The structure of 1-Y was refined as a two-component twin with occupancy factors 0.513 (1) and 0.487 (1). In 4 , one solvent molecule was disordered and included using multiple components with partial site-occupancy factors. 
    more » « less
  5. Abstract Metalation of the polynucleating ligandF,tbsLH6(1,3,5‐C6H9(NC6H3−4‐F−2‐NSiMe2tBu)3) with two equivalents of Zn(N(SiMe3)2)2affords the dinuclear product (F,tbsLH2)Zn2(1), which can be further deprotonated to yield (F,tbsL)Zn2Li2(OEt2)4(2). Transmetalation of2with NiCl2(py)2yields the heterometallic, trinuclear cluster (F,tbsL)Zn2Ni(py) (3). Reduction of3with KC8affords [KC222][(F,tbsL)Zn2Ni] (4) which features a monovalent Ni centre. Addition of 1‐adamantyl azide to4generates the bridging μ3‐nitrenoid adduct [K(THF)3][(F,tbsL)Zn2Ni(μ3‐NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S=). Cyclic voltammetry of5reveals two fully reversible redox events. The dianionic nitrenoid [K2(THF)9][(F,tbsL)Zn2Ni(μ3‐NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra‐ and intermolecular H‐atom abstraction processes. Ni K‐edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2Ni] nitrenoid complexes. However, DFT analysis suggests Ni‐borne oxidation for5. 
    more » « less