Prairie dogs (Cynomys spp.) are burrowing rodents considered to be ecosystem engineers and keystone species of the central grasslands of North America. Yet, prairie dog populations have declined by an estimated 98% throughout their historic range. This dramatic decline has resulted in the widespread loss of their important ecological role throughout this grassland system. The 92,060 ha Sevilleta NWR in central New Mexico includes more than 54,000 ha of native grassland. Gunnison's prairie dogs (C. gunnisoni) were reported to occupy ~15,000 ha of what is now the SNWR during the 1960's, prior to their systematic eradication. In 2010, we collaborated with local agencies and conservation organizations to restore the functional role of prairie dogs to the grassland system. Gunnison's prairie dogs were reintroduced to a site that was occupied by prairie dogs 40 years ago. This work is part of a larger, long-term study where we are studying the ecological effects of prairie dogs as they re-colonize the grassland ecosystem.
more »
« less
Reintroducing a keystone burrowing rodent to restore an arid North American grassland: challenges and successes
Prairie dogs (Cynomysspp.) are important ecosystem engineers in North America's central grasslands, and are a key prey base for numerous predators. Prairie dogs have declined dramatically across their former range, prompting reintroduction efforts to restore their populations and ecosystem functions, but the success of these reintroductions is rarely monitored rigorously. Here, we reintroduced 2,400 Gunnison's prairie dogs (C. gunnisoni) over a period of 6 years to the Sevilleta National Wildlife Refuge, in central New Mexico, U.S.A., a semi‐arid grassland ecosystem at the southern edge of their range. We evaluated the population dynamics of prairie dogs following their reintroduction, and their consequent effects on grassland vertebrates. We found postrelease survival of prairie dogs stabilized at levels typical for the species (ca. 50%) after approximately 1 month, while average annual recruitment was ca. 0.35 juveniles per female, well below what was required for a self‐sustaining, stable population. Extreme drought conditions during much of the study period may have contributed to low recruitment. However, recruitment increased steadily over time, indicating that the reintroduced colony may simply need more time to establish in this arid system. We also found well‐known associates of prairie dog colonies, such as American badgers (Taxidea taxus) and burrowing owls (Athene cunicularia), were significantly more common on the colonies than off. After 7 years, we have yet to meet our goal of establishing a self‐sustaining population of Gunnison's prairie dogs in this semi‐arid grassland. But despite the uncertainty and challenges, our work shows that reestablishing keystone species can promote ecosystem restoration.
more »
« less
- PAR ID:
- 10074283
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Restoration Ecology
- Volume:
- 26
- Issue:
- 5
- ISSN:
- 1061-2971
- Page Range / eLocation ID:
- p. 909-920
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gallery, Rachel (Ed.)Abstract Livestock grazing has been shown to alter the structure and functions of grassland ecosystems. It is well acknowledged that grazing pressure is one of the strongest drivers of ecosystem‐level effects of grazing, but few studies have assessed how grazing pressure impacts grassland biodiversity and ecosystem multifunctionality (EMF).Here, we assessed how different metrics of biodiversity (i.e., plants and soil microbes) andEMFresponded to seven different grazing treatments based on an 11‐year field experiment in semi‐arid Inner Mongolian steppe.We found that soil organic carbon, plant‐available nitrogen and plant functional diversity all decreased even at low grazing pressure, while above‐ground primary production and bacterial abundance decreased only at high levels of grazing pressure.Structural equation models revealed thatEMFwas driven by direct effects of grazing, rather than the effects of grazing on plant or microbial community composition. Grazing effects on plant functional diversity and soil microbial abundance did have moderate effects onEMF, while plant richness did not.Synthesis. Our results showed ecosystem functions differ in their sensitivity to grazing pressure, requiring a low grazing threshold to achieve multiple goals in the Eurasian steppe. Aplain language summaryis available for this article.more » « less
-
Abstract Reproduction, embryological development, and settlement of corals are critical for survival of coral reefs through larval propagation. Yet, for many species of corals, a basic understanding of the early life‐history stages is lacking. In this study, we report our observations forex situreproduction in the massive reef‐building coralPoritescf.P. lobataacross 2 years. Spawning occurred in April and May, on the first day after the full moon with at least 2 h of darkness between sunset and moonrise, on a rising tide. Only a small proportion of corals observed had mature gametes or spawned (14–35%). Eggs were 185–311 μm in diameter, spherical, homogenous, and provisioned with 95–155 algal cells (family Symbiodiniaceae). Males spawned before females, andex situfertilization rates were high for the first 2 h after egg release. Larvae were elliptical, ~300 μm long, and symbiotic. Just 2 days after fertilization, many larvae swam near the bottom of culture dishes and were competent to settle. Settlers began calcification 2 days after metamorphosis, and tentacles were developed 10 days after attachment. Our observations contrast with previous studies by suggesting an abbreviated pelagic larval period inPoritescf.P. lobata, which could lead to the isolation of some populations. The high thermal tolerance and broad geographic range ofPoritescf.P. lobatasuggest that this species could locally adapt to a wide range of environmental conditions, especially if larvae are locally retained. The results of this study can inform future work on reproduction, larval biology, dispersal, and recruitment inPoritescf.P. lobata, which could have an ecological advantage over less resilient coral species under future climate change.more » « less
-
Abstract In the midst of an ongoing biodiversity crisis, much research has focused on species losses and their impacts on ecosystem functioning. The functional consequences (ecosystem response) of shifts in communities are shaped not only by changes in species richness, but also by compositional shifts that result from species losses and gains. Species differ in their contribution to ecosystem functioning, so species identity underlies the consequences of species losses and gains on ecosystem functions. Such research is critical to better predict the impact of disturbances on communities and ecosystems. We used the “Community Assembly and the Functioning of Ecosystems” (CAFE) approach, a modification of the Price equation to understand the functional consequences and relative effects of richness and composition changes in small nonvolant mammal and dung beetle communities as a result of two common disturbances in North American prairie restorations, prescribed fire and the reintroduction of large grazing mammals. Previous research in this system has shown dung beetles are critically important decomposers, while small mammals modulate much energy in prairie food webs. We found that dung beetle communities were more responsive to bison reintroduction and prescribed fires than small nonvolant mammals. Dung beetle richness increased after bison reintroduction, with higher dung beetle community biomass resulting from changes in remaining species (context‐dependent component) rather than species turnover (richness components); prescribed fire caused a minor increase in dung beetle biomass for the same reason. For small mammals, bison reintroduction reduced energy transfer through the loss of species, while prescribed fire had little impact on either small mammal richness or energy transfer. The CAFE approach demonstrates how bison reintroduction controls small nonvolant mammal communities by increasing prairie food web complexity, and increases dung beetle populations with possible benefits for soil health through dung mineralization and soil bioturbation. Prescribed fires, however, have little effect on small mammals and dung beetles, suggesting a resilience to fire. These findings illustrate the key role of re‐establishing historical disturbance regimes when restoring endangered prairie ecosystems and their ecological function.more » « less
-
null (Ed.)Accurate estimates of population dynamics play a major role in formulating conservation strategies for Gunnison’s prairie dogs (Cynomys gunnisoni) and other keystone species. Over five years (2014-2018) at Valles Caldera National Preserve in New Mexico USA, we used a portable ultrasound machine (PUM) to investigate the presence or absence of pregnancy, and to determine uterine litter size for 238 pregnant female Gunnison’s prairie dogs from two colonies. We compared litter size at weaning for 168 of these 238 females and we found no significant difference between uterine litter size and litter size at weaning. For 76 of these 168 females (45%), estimates of uterine litter size and litter size at weaning were identical. We detected no significant variation among years for uterine litter size versus litter size at weaning. To our knowledge, our research is the first to compare uterine litter size to litter size at weaning for the same group of females living under natural conditions.more » « less
An official website of the United States government
