Abstract Leaf litter inputs can influence the structure and function of both terrestrial and adjacent aquatic ecosystems. Dioecy and herbivory are two factors that together have received little attention, yet have the potential to affect the quantity, quality, and timing of riparian litterfall, litter chemistry, and litter decomposition processes. Here, we explore litter chemistry differences for the dioecious Sitka willow ( Salix sitchensis Sanson ex. Bong), which is establishing on primary successional habitats at Mount St. Helens (WA, USA) and is heavily infested with a stem‐boring weevil ( Cryptorhynchus lapathi ). Weevil‐attacked branches produced summer senesced litter that had significantly higher %N, lower C:N ratios, and lower condensed tannins than litter from branches that were unattacked by the weevil and senesced naturally in the autumn. Weevils more often attack female willows; however, these common litter chemicals did not significantly differ between males and females within the weevil‐attacked and ‐unattacked groups. High‐resolution mass spectrometry was used to isolate compounds in litter from 10 Sitka willow individuals with approximately 1500–1600 individual compounds isolated from each sample. There were differences between weevil‐attacked litter and green leaf samples, but at this level, there was no clustering of male and female samples. However, further exploration of the isolated compounds determined a suite of compounds present only in either males or females. These findings suggest some variation in more complex litter chemistry between the sexes, and that significant differences in weevil‐attacked litter chemistry, coupled with the shift in seasonality of litter inputs to streams, could significantly affect in‐stream ecological processes, such as decomposition and detritivore activity.
more »
« less
Using ultrasonography to compare uterine litter size with litter size at weaning for Gunnison's prairie dogs.
Accurate estimates of population dynamics play a major role in formulating conservation strategies for Gunnison’s prairie dogs (Cynomys gunnisoni) and other keystone species. Over five years (2014-2018) at Valles Caldera National Preserve in New Mexico USA, we used a portable ultrasound machine (PUM) to investigate the presence or absence of pregnancy, and to determine uterine litter size for 238 pregnant female Gunnison’s prairie dogs from two colonies. We compared litter size at weaning for 168 of these 238 females and we found no significant difference between uterine litter size and litter size at weaning. For 76 of these 168 females (45%), estimates of uterine litter size and litter size at weaning were identical. We detected no significant variation among years for uterine litter size versus litter size at weaning. To our knowledge, our research is the first to compare uterine litter size to litter size at weaning for the same group of females living under natural conditions.
more »
« less
- Award ID(s):
- 1753829
- PAR ID:
- 10295786
- Date Published:
- Journal Name:
- Mammal research
- Volume:
- 65
- ISSN:
- 2199-2401
- Page Range / eLocation ID:
- 869-874
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Prairie dogs (Cynomysspp.) are important ecosystem engineers in North America's central grasslands, and are a key prey base for numerous predators. Prairie dogs have declined dramatically across their former range, prompting reintroduction efforts to restore their populations and ecosystem functions, but the success of these reintroductions is rarely monitored rigorously. Here, we reintroduced 2,400 Gunnison's prairie dogs (C. gunnisoni) over a period of 6 years to the Sevilleta National Wildlife Refuge, in central New Mexico, U.S.A., a semi‐arid grassland ecosystem at the southern edge of their range. We evaluated the population dynamics of prairie dogs following their reintroduction, and their consequent effects on grassland vertebrates. We found postrelease survival of prairie dogs stabilized at levels typical for the species (ca. 50%) after approximately 1 month, while average annual recruitment was ca. 0.35 juveniles per female, well below what was required for a self‐sustaining, stable population. Extreme drought conditions during much of the study period may have contributed to low recruitment. However, recruitment increased steadily over time, indicating that the reintroduced colony may simply need more time to establish in this arid system. We also found well‐known associates of prairie dog colonies, such as American badgers (Taxidea taxus) and burrowing owls (Athene cunicularia), were significantly more common on the colonies than off. After 7 years, we have yet to meet our goal of establishing a self‐sustaining population of Gunnison's prairie dogs in this semi‐arid grassland. But despite the uncertainty and challenges, our work shows that reestablishing keystone species can promote ecosystem restoration.more » « less
-
Prairie dogs (Cynomys spp.) are burrowing rodents considered to be ecosystem engineers and keystone species of the central grasslands of North America. Yet, prairie dog populations have declined by an estimated 98% throughout their historic range. This dramatic decline has resulted in the widespread loss of their important ecological role throughout this grassland system. The 92,060 ha Sevilleta NWR in central New Mexico includes more than 54,000 ha of native grassland. Gunnison's prairie dogs (C. gunnisoni) were reported to occupy ~15,000 ha of what is now the SNWR during the 1960's, prior to their systematic eradication. In 2010, we collaborated with local agencies and conservation organizations to restore the functional role of prairie dogs to the grassland system. Gunnison's prairie dogs were reintroduced to a site that was occupied by prairie dogs 40 years ago. This work is part of a larger, long-term study where we are studying the ecological effects of prairie dogs as they re-colonize the grassland ecosystem.more » « less
-
Abstract Joint intentionality, the mutual understanding of shared goals or actions to partake in a common task, is considered an essential building block of theory of mind in humans. Domesticated dogs are unusually adept at comprehending human social cues and cooperating with humans, making it possible that they possess behavioral signatures of joint intentionality in interactions with humans. Horschler and colleagues (Anim Behav 183: 159–168, 2022) examined joint intentionality in a service dog population, finding that upon interruption of a joint experience, dogs preferentially re-engaged their former partner over a passive bystander, a behavior argued to be a signature of joint intentionality in human children. In the current study, we aimed to replicate and extend these results in pet dogs. One familiar person played with the dog and then abruptly stopped. We examined if dogs would preferentially re-engage the player instead of a familiar bystander who was also present. Consistent with the findings of Horschler and colleagues (Anim Behav 183: 159–168, 2022), pet dogs preferentially gazed toward and offered the toy to the player significantly more than the familiar bystander. However, no difference was observed in physical contact. These findings provide preliminary evidence for behavioral signatures of joint intentionality in pet dogs, but future work is needed to understand whether this phenomenon extends to other contexts.more » « less
-
Dryland ecosystems cover nearly 45% of the Earth’s land area and account for large proportions of global annual productivity and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot climate regimes, and potentially unique physical drivers of decomposition. In this study, we elucidated the role of photopriming, i.e. potential for enhancement of microbial decay due to exposure of standing leaf litter to solar radiation prior to litterfall. We exposed litter substrates to three different UV radiation treatments simulating three-months of UV radiation exposure in southern New Mexico: no light, UVA+UVB+visible, and UVA+Visible. There were three litter types: mesquite leaflets (Prosopis glandulosa, litter with nitrogen (N) concentration), filter paper (pure cellulose), and basswood (Tilia spp, high lignin concentration). We deployed the photoprimed litter in the field within a large scale precipitation manipulation experiment: ~50% precipitation reduction, ~150% precipitation addition, and ambient control.more » « less
An official website of the United States government

