skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Optical design of the TolTEC millimeter-wave camera
TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) in Puebla, Mexico to survey distant galaxies and star-forming regions in the Milky Way. The optical design simultaneously couples the field of view onto focal planes at 150, 220, and 280 GHz. The optical design and detector properties, as well as a data-driven model of the atmospheric emission of the LMT site, inform the sensitivity model of the integrated instrument. This model is used to optimize the instrument design, and to calculate the mapping speed as an early forecast of the science reach of the instrument.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
SPIE Astronomical Telescopes and Instrumentation 2018
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the optimum telescope focal ratio for a two-element, three-surface, telecentric image-transfer microlens-to-fiber coupled integral field unit within the constraints imposed by microoptics fabrication and optical aberrations. We create a generalized analytical description of the microoptics optical parameters from first principles. We find that the optical performance, including all aberrations, of a design constrained by an analytic model considering only spherical aberration and diffraction matches within ± 4 % of a design optimized by ray-tracing software such as Zemax. The analytical model does not require any compromise on the available clear aperture; about 90% mechanical aperture of hexagonal microlens is available for light collection. The optimum telescope f-ratio for a 200-μm core fiber-fed at f / 3.5 is between f / 7 and f / 12. We find the optimum telescope focal ratio changes as a function of fiber core diameter and fiber input beam speed. A telescope focal ratio of f / 8 would support the largest range of fiber diameters (100 to 500 μm) and fiber injection speeds (between f / 3 and f / 5). The optimization of the telescope and lenslet-coupled fibers is relevant for the design of high-efficiency dedicated survey telescopes, and for retrofitting existing facilities via introducing focal macro-optics to match the instrument input requirements. 
    more » « less
  2. This paper presents the simulation and calibration of a Fourier transform spectrometer (FTS) developed to measure the spectrum of radiation sources between 50 GHz and 330 GHz, such as the cosmic microwave background. The recorded signal is modified from the ideal by properties of the interferometer and the detection system. We have developed a ray-trace-based simulation with which we can model these effects. The model can be verified with measurements and used to understand the instrument’s systematic effects and to design new optimized configurations. The optimization comprises parameters of the design, such as large étendu, maximal spectral resolution, compact size, operational simplicity, and light weight, that conflict and need to be balanced. The numerical simulation consists of two parts: time-stream signal analysis and a ray-trace-based simulation that includes polarization and path length calculations and can account for the effects of beam loss and change of focus as the delay-generating mirror travels on its path. The simulation can study the coherence level and frequency resolution of the FTS instrument. While not exercised in this study, the simulation also can be used to study the effect of mirror figure and polarizer non-idealities, walk-off rays in the beam due to the large étendu, as well as misalignment of optical elements. We then present the comparison between simulations of a spectrally unresolved source and measurements by the FTS.

    more » « less
  3. Reconstituted cytoskeleton composites have emerged as a valuable model system for studying non-equilibrium soft matter. The faithful capture of the dynamics of these 3D, dense networks calls for optical sectioning, which is often associated with fluorescence confocal microscopes. However, recent developments in light-sheet fluorescence microscopy (LSFM) have established it as a cost-effective and, at times, superior alternative. To make LSFM accessible to cytoskeleton researchers less familiar with optics, we present a step-by-step beginner's guide to building a versatile light-sheet fluorescence microscope from off-the-shelf components. To enable sample mounting with traditional slide samples, this LSFM follows the single-objective lightsheet (SOLS) design, which utilizes a single objective for both the excitation and emission collection. We describe the function of each component of the SOLS in sufficient detail to allow readers to modify the instrumentation and design it to fit their specific needs. Finally, we demonstrate the use of this custom SOLS instrument by visualizing asters in kinesin-driven microtubule networks. 
    more » « less
  4. Abstract

    Surface Light Scattering Spectroscopy (SLSS) can characterize the dynamics of an interface between two immiscible fluids by measuring the frequency spectrum of coherent light scattered from thermophysical fluctuations—‘ripplons’. In principle, and for many interfaces, SLSS can simultaneously measure surface tension and viscosity, with the potential for higher-order properties, such as surface elasticity and bending moments. Previously, this has been challenging. We describe and present some measurements from an instrument with improvements in optical design, specimen access, vibrational stability, signal-to-noise ratio, electronics, and data processing. Quantitative improvements include total internal reflection at the interface to enhance the typically available signal by a factor of order 40 and optical improvements that minimize adverse effects of sloshing induced by external vibrations. Information retrieval is based on a comprehensive surface response function, an instrument function, which compensates for real geometrical and optical limitations, and processing of almost real-time data to report results and their likely accuracy. Detailed models may be fit to the power spectrum in real time. The raw one-dimensional digitized data stream is archived to allow post-experiment processing. This paper reports a system design and implementation that offers substantial improvements in accuracy, simplicity, ease of use, and cost. The presented data are for systems in regions of low viscosity where the ripplons are underdamped, but the hardware described is more widely applicable.

    more » « less
  5. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    We present the design of a novel instrument tuned to detect transiting exoplanet atmospheres. The instrument, which we call the exoplanet transmission spectroscopy imager (ETSI), makes use of a new technique called common-path multi-band imaging (CMI). ETSI uses a prism and multi-band lter to simultaneously image 15 spectral bandpasses on two detectors from 430 􀀀 975nm (with a average spectral resolution of R = = = 23) during exoplanet transits of a bright star. A prototype of the instrument achieved photon-noise limited results which were below the atmospheric amplitude scintillation noise limit. ETSI can detect the presence and composition of an exoplanet atmosphere in a relatively short time on a modest-size telescope. We show the optical design of the instrument. Further, we discuss design trades of the prism and multi-band lter which are driven by the science of the ETSI instrument. We describe the upcoming survey with ETSI that will measure dozens of exoplanet atmosphere spectra in  2 years on a two meter telescope. Finally, we will discuss how ETSI will be a powerful means for follow up on all gas giant exoplanets that transit bright stars, including a multitude of recently identi ed TESS (NASA's Transiting Exoplanet Survey Satellite) exoplanets. 
    more » « less