skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Colorimetric Carbonyl Sulfide (COS)/Hydrogen Sulfide (H 2 S) Donation from γ‐Ketothiocarbamate Donor Motifs
Abstract Hydrogen sulfide (H2S) is a biologically active molecule that exhibits protective effects in a variety of physiological and pathological processes. Although several H2S‐related biological effects have been discovered by using H2S donors, knowing how much H2S has been released from donors under different conditions remains challenging. Now, a series of γ‐ketothiocarbamate (γ‐KetoTCM) compounds that provide the first examples of colorimetric H2S donors and enable direct quantification of H2S release, were reported. These compounds are activated through a pH‐dependent deprotonation/β‐elimination sequence to release carbonyl sulfide (COS), which is quickly converted into H2S by carbonic anhydrase. Thep‐nitroaniline released upon donor activation provides an optical readout that correlates directly to COS/H2S release, thus enabling colorimetric measurement of H2S donation.  more » « less
Award ID(s):
1625529 1531189
PAR ID:
10074321
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
40
ISSN:
1433-7851
Page Range / eLocation ID:
p. 13101-13105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogen sulfide (H 2 S) is an important cellular signaling molecule that exhibits promising protective effects. Although a number of triggerable H 2 S donors have been developed, spatiotemporal feedback from H 2 S release in biological systems remains a key challenge in H 2 S donor development. Herein we report the synthesis, evaluation, and application of caged sulfenyl thiocarbonates as new fluorescent H 2 S donors. These molecules rely on thiol cleavage of sulfenyl thiocarbonates to release carbonyl sulfide (COS), which is quickly converted to H 2 S by carbonic anhydrase (CA). This approach is a new strategy in H 2 S release and does not release electrophilic byproducts common from COS-based H 2 S releasing motifs. Importantly, the release of COS/H 2 S is accompanied by the release of a fluorescent reporter, which enables the real-time tracking of H 2 S by fluorescence spectroscopy or microscopy. Dependent on the choice of fluorophore, either one or two equivalents of H 2 S can be released, thus allowing for the dynamic range of the fluorescent donors to be tuned. We demonstrate that the fluorescence response correlates directly with quantified H 2 S release and also demonstrate the live-cell compatibility of these donors. Furthermore, these fluorescent donors exhibit anti-inflammatory effects in RAW 264.7 cells, indicating their potential application as new H 2 S-releasing therapeutics. Taken together, sulfenyl thiocarbonates provide a new platform for H 2 S donation and readily enable fluorescent tracking of H 2 S delivery in complex environments. 
    more » « less
  2. Abstract Arylthioamides have been frequently employed to assess the chemical biology and pharmacology of hydrogen sulfide (H2S). From this class of donors, however, extremely low H2S releasing efficiencies have been reported and proper mechanistic studies have been omitted. Consequently, millimolar concentrations of arylthioamides are required to liberate just trace amounts of H2S, and via an unidentified mechanistic pathway, which obfuscates the interpretation of any biological activity that stems from their use. Herein, we report that H2S release from this valuable class of donors can be markedly enhanced through intramolecular nucleophilic assistance. Specifically, we demonstrate that both disulfide‐ and diselenide‐linked thioamides are responsive to biologically relevant concentrations of glutathione and release two molar equivalents of H2S via an intramolecular cyclization that significantly augments their rate and efficiency of sulfide delivery in both buffer and live human cells. 
    more » « less
  3. Abstract Polymeric donors of gasotransmitters, gaseous signaling molecules such as hydrogen sulfide, nitric oxide, and carbon monoxide, hold potential for localized and extended delivery of these reactive gases. Examples of gasotransmitter donors based on polysaccharides are limited despite the availability and generally low toxicity of this broad class of polymers. In this work, we sought to create a polysaccharide H2S donor by covalently attachingN‐thiocarboxyanhydrides (NTAs) to amylopectin, the major component of starch. To accomplish this, we added an allyl group to an NTA, which can spontaneously hydrolyze to release carbonyl sulfide and ultimately H2S via the ubiquitous enzyme carbonic anhydrase, and then coupled it to thiol‐functionalized amylopectin of three different molecular weights (MWs) through thiol‐ene “click” photochemistry. We also varied the degree of substitution (DS) of the NTA along the amylopectin backbone. H2S release studies on the six samples, termed amyl‐NTAs, with variable MWs (three) and DS values (two), revealed that lower MW and higher DS led to faster release. Finally, dynamic light scattering experiments suggested that aggregation increased with MW, which may also have affected H2S release rates. Collectively, these studies present a new synthetic method to produce polysaccharide H2S donors for applications in the biomedical field. 
    more » « less
  4. Similar to hydrogen sulfide (H 2 S), its chalcogen congener, Hydrogen selenide (H 2 Se), is an emerging molecule of interest given its endogenous expression and purported biological activity. However, unlike H 2 S, detailed investigations into the chemical biology of H 2 Se are limited and little is known about its innate physiological functions, cellular targets, and therapeutic potential. The obscurity surrounding these fundamental questions is largely due to a lack of small molecule donors that can effectively increase the bioavailability of H 2 Se through their continuous liberation of the transient biomolecule under physiologically relevant conditions. Driven by this unmet demand for H 2 Se-releasing moieties, we report that γ-keto selenides provide a useful platform for H 2 Se donation via an α-deprotonation/β-elimination pathway that is highly dependent on both pH and alpha proton acidity. These attributes afforded a small library of donors with highly variable rates of release (higher alpha proton acidity = faster selenide liberation), which is accelerated under neutral to slightly basic conditions—a feature that is unique and complimentary to previously reported H 2 Se donors. We also demonstrate the impressive anticancer activity of γ-keto selenides in both HeLa and HCT116 cells in culture, which is likely to stimulate additional interest and research into the biological activity and anticancer effects of H 2 Se. Collectively, these results indicate that γ-keto selenides provide a highly versatile and effective framework for H 2 Se donation. 
    more » « less
  5. Abstract Hydrogen sulfide (H2S) is a gaseous molecule that has received attention for its role in biological processes and therapeutic potential in diseases, such as ischemic reperfusion injury. Despite its clinical relevance, delivery of H2S to biological systems is hampered by its toxicity at high concentrations. Herein, we report the first metal‐based H2S donor that delivers this gas selectively to hypoxic cells. We further show that H2S release from this compound protects H9c2 rat cardiomyoblasts from an in vitro model of ischemic reperfusion injury. These results validate the utility of redox‐activated metal complexes as hypoxia‐selective H2S‐releasing agents for use as tools to study the role of this gaseous molecule in complex biological systems. 
    more » « less