skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enol-Mediated Delivery of H 2 Se from γ-Keto Selenides: Mechanistic Insight and Evaluation
Similar to hydrogen sulfide (H 2 S), its chalcogen congener, Hydrogen selenide (H 2 Se), is an emerging molecule of interest given its endogenous expression and purported biological activity. However, unlike H 2 S, detailed investigations into the chemical biology of H 2 Se are limited and little is known about its innate physiological functions, cellular targets, and therapeutic potential. The obscurity surrounding these fundamental questions is largely due to a lack of small molecule donors that can effectively increase the bioavailability of H 2 Se through their continuous liberation of the transient biomolecule under physiologically relevant conditions. Driven by this unmet demand for H 2 Se-releasing moieties, we report that γ-keto selenides provide a useful platform for H 2 Se donation via an α-deprotonation/β-elimination pathway that is highly dependent on both pH and alpha proton acidity. These attributes afforded a small library of donors with highly variable rates of release (higher alpha proton acidity = faster selenide liberation), which is accelerated under neutral to slightly basic conditions—a feature that is unique and complimentary to previously reported H 2 Se donors. We also demonstrate the impressive anticancer activity of γ-keto selenides in both HeLa and HCT116 cells in culture, which is likely to stimulate additional interest and research into the biological activity and anticancer effects of H 2 Se. Collectively, these results indicate that γ-keto selenides provide a highly versatile and effective framework for H 2 Se donation.  more » « less
Award ID(s):
2143826
PAR ID:
10377799
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrogen sulfide (H2S) is a biologically active molecule that exhibits protective effects in a variety of physiological and pathological processes. Although several H2S‐related biological effects have been discovered by using H2S donors, knowing how much H2S has been released from donors under different conditions remains challenging. Now, a series of γ‐ketothiocarbamate (γ‐KetoTCM) compounds that provide the first examples of colorimetric H2S donors and enable direct quantification of H2S release, were reported. These compounds are activated through a pH‐dependent deprotonation/β‐elimination sequence to release carbonyl sulfide (COS), which is quickly converted into H2S by carbonic anhydrase. Thep‐nitroaniline released upon donor activation provides an optical readout that correlates directly to COS/H2S release, thus enabling colorimetric measurement of H2S donation. 
    more » « less
  2. Hydrogen sulfide (H 2 S) is an important cellular signaling molecule that exhibits promising protective effects. Although a number of triggerable H 2 S donors have been developed, spatiotemporal feedback from H 2 S release in biological systems remains a key challenge in H 2 S donor development. Herein we report the synthesis, evaluation, and application of caged sulfenyl thiocarbonates as new fluorescent H 2 S donors. These molecules rely on thiol cleavage of sulfenyl thiocarbonates to release carbonyl sulfide (COS), which is quickly converted to H 2 S by carbonic anhydrase (CA). This approach is a new strategy in H 2 S release and does not release electrophilic byproducts common from COS-based H 2 S releasing motifs. Importantly, the release of COS/H 2 S is accompanied by the release of a fluorescent reporter, which enables the real-time tracking of H 2 S by fluorescence spectroscopy or microscopy. Dependent on the choice of fluorophore, either one or two equivalents of H 2 S can be released, thus allowing for the dynamic range of the fluorescent donors to be tuned. We demonstrate that the fluorescence response correlates directly with quantified H 2 S release and also demonstrate the live-cell compatibility of these donors. Furthermore, these fluorescent donors exhibit anti-inflammatory effects in RAW 264.7 cells, indicating their potential application as new H 2 S-releasing therapeutics. Taken together, sulfenyl thiocarbonates provide a new platform for H 2 S donation and readily enable fluorescent tracking of H 2 S delivery in complex environments. 
    more » « less
  3. Selenium is essential to human physiology and has recently shown potential in the treatment of common pathophysiological conditions ranging from arsenic poisoning to cancer. Although the precise metabolic and chemical pathways of selenium incorporation into biomolecules remain somewhat unclear, many such pathways proceed through hydrogen selenide (H 2 Se/HSe − ) formation. Despite this importance, well-characterized chemistry that enables H 2 Se release under controlled conditions remains lacking. Motivated by this need, we report here the development of a hydrolysis-based H 2 Se donor (TDN1042). Utilizing 31 P and 77 Se NMR experiments, we demonstrate the pH dependence of H 2 Se release and characterize observed reaction intermediates during the hydrolysis mechanism. Finally, we confirm H 2 Se release using electrophilic trapping reagents, which not only demonstrates the fidelity of this donor platform but also provides an efficient method for investigating future H 2 Se donor motifs. Taken together, this work provides an early example of an H 2 Se donor that functions through a well-defined and characterized mechanism. 
    more » « less
  4. Water splitting has been widely considered to be an efficient way to generate sustainable and renewable energy resources in fuel cells, metal–air batteries and other energy conversion devices. Exploring efficient electrocatalysts to expedite the anodic oxygen evolution reaction (OER) is a crucial task that needs to be addressed in order to boost the practical application of water splitting. Intensive efforts have been devoted to develop mixed transition metal based chalcogenides as effective OER electrocatalysts. Herein, we have reported synthesis of a series of mixed metal selenides containing Co, Ni and Cu employing combinatorial electrodeposition, and systematically investigated how the transition metal doping affects the OER catalytic activity in alkaline medium. Energy dispersive spectroscopy (EDS) was performed to detect the elemental compositions and confirm the feasibility of compositional control of 66 metal selenide thin films. It was observed that the OER catalytic activity is sensitive to the concentration of Cu in the catalysts, and the catalyst activity tended to increase with increasing Cu concentration. However, increasing the Cu concentration beyond a certain limit led to decrease in catalytic efficiency, and copper selenide by itself, although catalytically active, showed higher onset potential and overpotential for OER compared to the ternary and quaternary mixed metal selenides. Interestingly, the best quaternary composition (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 showed similar crystal structure as its parent compound of Cu 3 Se 2 with slight decrease in lattice spacings of (101) and (210) lattice planes (0.0222 Å and 0.0148 Å, respectively) evident from the powder X-ray diffraction pattern. (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 thin film exhibited excellent OER catalytic activity and required an overpotential of 272 mV to reach a current density of 10 mA cm −2 , which is 54 mV lower than Cu 3 Se 2 , indicating a synergistic effect of transition metal doping in enhancing catalytic activity. 
    more » « less
  5. This study develops mechanistic understanding of the factors which control the phase in syntheses of copper selenide nanocrystals by investigating how the chemistry of the dodecylselenol reactant is altered by the ligand and solvent environment. 1 H NMR and 77 Se NMR were used to study how commonly used solvents (octadecene and dioctylether) and ligands (oleylamine, oleic acid, stearylamine, stearic acid and trioctyl phosphine) change the nature of the dodecylselenol reactant at 25 °C, 155 °C and 220 °C. Unsaturations were prone to selenol additons, carboxylates underwent selenoesterification, amines caused the release of H 2 Se gas, and the phosphine formed phosphine selenide. Adventitious water caused oxidation to didodecyldiselenide. NMR studies were correlated with the phases that resulted in syntheses of nanocrystalline copper selenides, in which berzalianite, umangite or a metastable hexagonal phase were produced as identified by X-ray diffraction, depending on the ligand and solvent environemnts. Formation of the rare hexagonal Cu 2− x Se phase could be assigned to cases that included DD 2 Se 2 as a reactive intermediate, or strong L-type ligation of amines which was dependant on alkyl chain length. 
    more » « less