skip to main content


Title: The MASON Simulation Toolkit: Past, Present, and Future
MASON is a widely-used open-source agent-based simulation toolkit that has been in constant development since 2002. MASON's architecture was cutting-edge for its time, but advances in computer technology now offer new opportunities for the ABM community to scale models and apply new modeling techniques. We are extending MASON to provide these opportunities in response to community feedback. In this paper we discuss MASON, its history and design, and how we plan to improve and extend it over the next several years. Based on user feedback will add distributed simulation, distributed GIS, optimization and sensitivity analysis tools, external language and development environment support, statistics facilities, collaborative archives, and educational tools.  more » « less
Award ID(s):
1727303
NSF-PAR ID:
10074367
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Multiagent-based Simulation Workshop (MABS) at AAMAS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes Distributed MASON, a distributed version of the MASON agent-based simulation tool. Distributed MASON is architected to take advantage of well known principles from Parallel and Discrete Event Simulation, such as the use of Logical Processes (LP) as a method for obtaining scalable and high performing simulation systems. We first explain data management and sharing between LPs and describe our approach to load balancing. We then present both a local greedy approach and a global hierarchical approach. Finally, we present the results of our implementation of Distributed MASON on an instance in the Amazon Cloud, using several standard multi-agent models. The results indicate that our design is highly scalable and achieves our expected levels of speed-up. 
    more » « less
  2. Role-plays of interpersonal interactions are essential to learning across professions, but effective simulations are difficult to create in typical learning management systems. To empower educators and researchers to advance simulation-based pedagogy, we have developed the Digital Clinical Simulation Suite (DCSS, pronounced "decks"), an open-source platform for rehearsing for improvisational interactions. Participants are immersed in vignettes of professional practice through video, images, and text, and they are called upon to improvisationally make difficult decisions through recorded audio and text. Tailored data displays support participant reflection, instructional facilitation, and educational research. DCSS is based on six design principles: 1) Community Adaptation, 2) Masked Technical Complexity, 3) Authenticity of Task, 4) Improvisational Voice, 5) Data Access through "5Rs", and 6) Extensible AI Coaching. These six principles mean that any educator should be able to create a scenario that learners should engage in authentic professional challenges using ordinary computing devices, and learners and educators should have access to data for reflection, facilitation, and development of AI tools for real-time feedback. In this paper, we describe the architecture of DCSS and illustrate its use and efficacy in cases from online courses, colleges of education, and K-12 schools. 
    more » « less
  3. National Science Foundation (NSF) funded Engineering Research Centers (ERC) must complement their technical research with various education and outreach opportunities to: 1) improve and promote engineering education, both within the center and to the local community; 2) encourage and include the underrepresented populations to participate in Engineering activities; and 3) advocate communication and collaboration between industry and academia. ERCs ought to perform an adequate evaluation of their educational and outreach programs to ensure that beneficial goals are met. Each ERC has complete autonomy in conducting and reporting such evaluation. Evaluation tools used by individual ERCs are quite similar, but each ERC has designed their evaluation processes in isolation, including evaluation tools such as survey instruments, interview protocols, focus group protocols, and/or observation protocols. These isolated efforts resulted in redundant resources spent and lacking outcome comparability across ERCs. Leaders from three different ERCs led and initiated a collaborative effort to address the above issue by building a suite of common evaluation instruments that all current and future ERCs can use. This leading group consists of education directors and external evaluators from all three partners ERCs and engineering education researchers, who have worked together for two years. The project intends to address the four ERC program clusters: Broadening Participation in Engineering, Centers and Networks, Engineering Education, and Engineering Workforce Development. The instruments developed will pay attention to culture of inclusion, outreach activities, mentoring experience, and sustained interest in engineering. The project will deliver best practices in education program evaluation, which will not only support existing ERCs, but will also serve as immediate tools for brand new ERCs and similar large-scale research centers. Expanding the research beyond TEEC and sharing the developed instruments with NSF as well as other ERCs will also promote and encourage continual cross-ERC collaboration and research. Further, the joint evaluation will increase the evaluation consistency across all ERC education programs. Embedded instrumental feedback loops will lead to continual improvement to ERC education performance and support the growth of an inclusive and innovative engineering workforce. Four major deliveries are planned. First, develop a common quantitative assessment instrument, named Multi-ERC Instrument Inventory (MERCII). Second, develop a set of qualitative instruments to complement MERCII. Third, create a web-based evaluation platform for MERCII. Fourth, update the NSF ERC education program evaluation best practice manual. These deliveries together will become part of and supplemented by an ERC evaluator toolbox. This project strives to significantly impact how ERCs evaluate their educational and outreach programs. Single ERC based studies lack the sample size to truly test the validity of any evaluation instruments or measures. A common suite of instruments across ERCs would provide an opportunity for a large scale assessment study. The online platform will further provide an easy-to-use tool for all ERCs to facilitate evaluation, share data, and reporting impacts. 
    more » « less
  4. This WIP presentation is intended to share and gather feedback on the development of an observation protocol for K-12 integrated STEM instruction, the STEM-OP. Specifically, the STEM-OP is being developed for use in K-12 science and/or engineering settings where integrated STEM instruction takes place. While the importance of integrated STEM education is established through national policy documents, there remains disagreement on models and effective approaches for integrated STEM instruction. Our broad definition of integrated STEM includes the use of two or more STEM disciplines to solve a real-world problem or design challenge that supports student development of 21st century skills. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning that can be used to inform research of the effectiveness of new models and strategies. Existing instruments most commonly used by researchers, such as the Reformed Teaching Observation Protocol (RTOP), were designed prior to the development of the Next Generation Science Standards and the integration of engineering into science standards. These instruments were also designed for use in reform-based science classrooms, not engineering or integrated STEM learning environments. While engineering-focused observation protocols do exist for K-12 classrooms, they do not evaluate beyond an engineering focus, making them limited tools to evaluate integrated STEM instruction. In order to facilitate the implementation of integrated STEM in K-12 classrooms and the development of the nascent integrated STEM education literature, our research team is developing a new integrated STEM observation protocol for use in K-12 science and engineering classrooms. This valid and reliable instrument will be designed for use in a variety of educational contexts and by different education stakeholders to increase the quality of K-12 STEM education. At the end of this project, the STEM-OP will be made available through an online platform that will include an embedded training program to facilitate its broad use. In the first year of this four-year project, we are working on the initial development of the STEM-OP through video analysis and exploratory factor analysis. We are utilizing existing classroom video from a previous project with approximately 2,000 unique classroom videos representing a variety of grade levels (4-9), science content (life, earth, and physical science), engineering design challenges, and school demographics (urban, suburban). The development of the STEM-OP is guided by published frameworks that focus on providing quality K-12 integrated STEM and engineering education, such as the Framework for Quality K-12 Engineering Education. Our anticipated results at the time the ASEE meeting will include a review of our item development process and finalized items included on the draft STEM-OP. Additionally, we anticipate being able to share findings from the exploratory factor analysis (EFA) on our video-coded data, which will identify distinct instructional dimensions responsible for integrated STEM instruction. We value the opportunity to gather feedback from the engineering education community as the integration of engineering design and practices is integral to quality integrated STEM instruction. 
    more » « less
  5. Abstract

    Development of reliable germplasm repositories is critical for preservation of genetic resources of aquatic species, which are widely utilized to support biomedical innovation by providing a foundational source for naturally occurring variation and development of new variants through genetic manipulations. A significant barrier in repository development is the lack of cryopreservation capability and reproducibility across the research community, posing great risks of losing advances developed from billions of dollars of research investment. The emergence of open scientific hardware has fueled a new movement across biomedical research communities. With the increasing accessibility of consumer‐level fabrication technologies, such as three‐dimensional printers, open hardware devices can be custom designed, and design files distributed to community members for enhancing rigor, reproducibility, and standardization. The overall goal of this review is to explore pathways to create open‐hardware ecosystems among the communities using aquatic model resources for biomedical research. To gain feedback and insights from community members, an interactive workshop focusing on open‐hardware applications in germplasm repository development was held at the 2022 Aquatic Models for Human Disease Conference, Woods Hole, Massachusetts. This work integrates conceptual strategies with practical insights derived from workshop interactions using examples of germplasm repository development. These insights can be generalized for establishment of open‐hardware ecosystems for a broad biomedical research community. The specific objectives were to: (1) introduce an open‐hardware ecosystem concept to support biomedical research; (2) explore pathways toward open‐hardware ecosystems through four major areas, and (3) identify opportunities and future directions.

     
    more » « less