Multilayer networks describe the rich ways in which nodes are related by accounting for different relationships in separate layers. These multiple relationships are naturally represented by an adjacency tensor. In this work we study the use of the nonnegative Tucker decomposition (NNTuck) of such tensors under a KL loss as an expressive factor model that naturally generalizes existing stochastic block models of multilayer networks. Quantifying interdependencies between layers can identify redundancies in the structure of a network, indicate relationships between disparate layers, and potentially inform survey instruments for collecting social network data. We propose definitions of layer independence, dependence, and redundancy based on likelihood ratio tests between nested nonnegative Tucker decompositions. Using both synthetic and real-world data, we evaluate the use and interpretation of the NNTuck as a model of multilayer networks. Algorithmically, we show that using expectation maximization (EM) to maximize the log-likelihood under the NNTuck is step-by-step equivalent to tensorial multiplicative updates for the NNTuck under a KL loss, extending a previously known equivalence from nonnegative matrices to nonnegative tensors.
more »
« less
Discovering functionality of urban regions by learning low-dimensional representations of a spatial multiplex network
The complex relationships in an urban environment can be captured through multiple interrelated sources of data. These relationships form multilayer networks, that are also spatially embedded in an area, could be used to identify latent patterns. In this work, we propose a low-dimensional representation learning approach that considers multiple layers of a multiplex network simultaneously and is able to encode similarities between nodes across different layers. In particular, we introduce a novel neural network architecture to jointly learn low-dimensional representations of each network node from multiple layers of a network. This process simultaneously fuses knowledge of various data sources to better capture the characteristics of the nodes. To showcase the proposed method we focus on the problem of identifying the functionality of an urban region. Using a variety of public data sources for New York City, we design a multilayer network and evaluate our approach. Our results indicate that our proposed approach can improve the accuracy of traditional approaches in an unsupervised task.
more »
« less
- Award ID(s):
- 1739413
- PAR ID:
- 10074570
- Date Published:
- Journal Name:
- Proceedings of the Third Mining Urban Data Workshop (MUD 2018)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Learning low-dimensional representations of graphs has facilitated the use of traditional machine learning techniques to solving classic network analysis tasks such as link prediction, node classification, community detection, etc. However, to date, the vast majority of these learning tasks are focused on traditional single-layer/unimodal networks and largely ignore the case of multiplex networks. A multiplex network is a suitable structure to model multi-dimensional real-world complex systems. It consists of multiple layers where each layer represents a different relationship among the network nodes. In this work, we propose MUNEM, a novel approach for learning a low-dimensional representation of a multiplex network using a triplet loss objective function. In our approach, we preserve the global structure of each layer, while at the same time fusing knowledge among different layers during the learning process. We evaluate the effectiveness of our proposed method by testing and comparing on real-world multiplex networks from different domains, such as collaboration network, protein-protein interaction network, online social network. Finally, in order to deliberately examine the effect of our model’s parameters we conduct extensive experiments on synthetic multiplex networks.more » « less
-
Multilayer networks continue to gain significant attention in many areas of study, particularly due to their high utility in modeling interdependent systems such as critical infrastructures, human brain connectome, and socioenvironmental ecosystems. However, clustering of multilayer networks, especially using the information on higher-order interactions of the system entities, still remains in its infancy. In turn, higher-order connectivity is often the key in such multilayer network applications as developing optimal partitioning of critical infrastructures in order to isolate unhealthy system components under cyber-physical threats and simultaneous identification of multiple brain regions affected by trauma or mental illness. In this paper, we introduce the concepts of topological data analysis to studies of complex multilayer networks and propose a topological approach for network clustering. The key rationale is to group nodes based not on pairwise connectivity patterns or relationships between observations recorded at two individual nodes but based on how similar in shape their local neighborhoods are at various resolution scales. Since shapes of local node neighborhoods are quantified using a topological summary in terms of persistence diagrams, we refer to the approach as clustering using persistence diagrams (CPD). CPD systematically accounts for the important heterogeneous higher-order properties of node interactions within and in-between network layers and integrates information from the node neighbors. We illustrate the utility of CPD by applying it to an emerging problem of societal importance: vulnerability zoning of residential properties to weather- and climate-induced risks in the context of house insurance claim dynamics.more » « less
-
Networks (or graphs) are used to model the dyadic relations between entities in complex systems. Analyzing the properties of the networks reveal important characteristics of the underlying system. However, in many disciplines, including social sciences, bioinformatics, and technological systems, multiple relations exist between entities. In such cases, a simple graph is not sufficient to model these multiple relations, and a multilayer network is a more appropriate model. In this paper, we explore community detection in multilayer networks. Specifically, we propose a novel network decoupling strategy for efficiently combining the communities in the different layers using the Boolean primitives AND, OR, and NOT. Our proposed method, network decoupling, is based on analyzing the communities in each network layer individually and then aggregating the analysis results. We (i) describe our network decoupling algorithms for finding communities, (ii) present how network decoupling can be used to express different types of communities in multilayer networks, and (iii) demonstrate the effectiveness of using network decoupling for detecting communities in real-world and synthetic data sets. Compared to other algorithms for detecting communities in multilayer networks, our proposed network decoupling method requires significantly lower computation time while producing results of high accuracy. Based on these results, we anticipate that our proposed network decoupling technique will enable a more detailed analysis of multilayer networks in an efficient manner.more » « less
-
n this article, we present a novel and flexible multitask multilayer Bayesian mapping framework with readily extendable attribute layers. The proposed framework goes beyond modern metric-semantic maps to provide even richer environmental information for robots in a single mapping formalism while exploiting intralayer and interlayer correlations. It removes the need for a robot to access and process information from many separate maps when performing a complex task, advancing the way robots interact with their environments. To this end, we design a multitask deep neural network with attention mechanisms as our front-end to provide heterogeneous observations for multiple map layers simultaneously. Our back-end runs a scalable closed-form Bayesian inference with only logarithmic time complexity. We apply the framework to build a dense robotic map, including metric-semantic occupancy and traversability layers. Traversability ground truth labels are automatically generated from exteroceptive sensory data in a self-supervised manner. We present extensive experimental results on publicly available datasets and data collected by a three-dimensional bipedal robot platform and show reliable mapping performance in different environments. Finally, we also discuss how the current framework can be extended to incorporate more information, such as friction, signal strength, temperature, and physical quantity concentration using Gaussian map layers. The software for reproducing the presented results or running on customized data is made publicly available.more » « less
An official website of the United States government

