skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering Projects in Community Service (EPICS) High: Preliminary Findings Regarding Learning Outcomes for Underrepresented Students (Work in Progress, Diversity; Board 130)
Engineering Projects in Community Service (EPICS) High utilizes human-centered design processes to teach high school students how to develop solutions to real-world problems within their communities. The goals of EPICS High are to utilize both principles from engineering and social entrepreneurship to engage high and middle school students as problem-solvers and spark interest in STEM careers. Recently, the Cisco corporate advised fund at the Silicon Valley Community Foundation, granted Arizona State University funds to expand EPICS High to underrepresented students and study the student outcomes from participation in this innovative program. In this exploratory study we combined qualitative methods—in person observations and informal interviews—along with pre and post surveys with high school students, to answer the questions: What skills do students gain and how does their mindset about engineering entrepreneurship develop through participation in EPICS High? Research took place in Title I schools (meaning they have a high number of students from low-income families) as well as non-Title I schools. Our preliminary results show that students made gains in the following areas: their attitudes toward engineering; ability to improve upon existing ideas; incorporating stakeholders; overcoming obstacles; social responsibility; and appreciation of multiple perspectives when solving engineering problems. While males have better baseline scores for most measures, females tend to have the most growth in many of these areas. We conclude that these initial measures show positive outcomes for students participating in EPICS High, and provide questions for further research.  more » « less
Award ID(s):
1744539
PAR ID:
10074664
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A major goal in Engineering training in the U.S. is to continue to both grow and diversify the field. Project- and service-based forms of experiential, problem-based learning are often implemented with this as a goal, and Engineering Projects in Community Service (EPICS) High is one of the more well-regarded and widely implemented. Yet, the evidence based on if and how participation in such programs shapes student intentions and commitment to STEM pathways is currently limited, most especially for pre-college programming. This study asks: How do high school students’ engineering mindsets and their views of engineering/engineers change as they participate in project–service learning (as implemented through an EPICS High curriculum)? This study employed a mixed method design, combining pre- and post-test survey data that were collected from 259 matched students (63% minority, 43% women) enrolling in EPICS High (total of 536 completed pre-tests, 375 completed post-tests) alongside systematic ethnographic analysis of participant observation data conducted in the same 13 socioeconomically diverse schools over a two-year period. Statistical analyses showed that participants score highly on engineering-related concepts and attitudes at both pre- and post-test. These did not change significantly as a result of participation. However, we detected nuanced but potentially important changes in student perspectives and meaning, such as shifting perceptions of engineering and gaining key transversal skills. The value of participation to participants was connected to changes in the meaning of commitments to pursue engineering/STEM. 
    more » « less
  2. his project is supported by an NSF BPE grant. Career choices, such as engineering, are influenced by a number of factors including personal interest, ability, competence beliefs, prior work-related experience, and financial and social supports. However, financial and social support, a particularly significant factor for rural students’ career decisions, is often overlooked in the literature exploring career choice. Moreover, little work has explored how communities serve as key influencers for supporting or promoting engineering as a career choice. Therefore, the goal of this study is to explore the ways in which communities provide support to students deciding to pursue engineering as a college major. To better understand how students from selected rural area high schools choose engineering as a major, we conducted focus group discussions consisting of 4-6 students each from selected schools to talk collectively about their high school experiences and their choice to major in engineering. Choosing focus group participants from different schools enabled us to elicit tacit perceptions and beliefs that may not be evident when students from the same community talk with one another. That is, as students share their experiences across schools, they may recognize differences in their experiences that, though otherwise unconscious or unacknowledged, proved significant in their choice of college and major. We expect that certain community programs and the individuals involved will have some influence on students’ decisions to study engineering at [University Name]. We anticipate that the results will yield two key outcomes: 1. A holistic understanding of the communities that effectively support and encourage engineering major choice for rural students. 2. Locally driven, contextually relevant recommendations for policies and programs that would better enable economically disadvantaged, rural schools in southwestern Virginia to support engineering as a career choice for high school students. By understanding the ways some economically-disadvantaged rural communities support engineering as a career choice and linking a broad spectrum of rural communities together around this issue, this project will broaden participation in engineering by increasing support for students from these areas. By shifting our focus from students to communities, this research broadens our understanding of career choice by capturing the perspectives of community members (including not only school personnel, but also community leaders, students’ families, business owners and others) who often play a key role in students’ decisions, particularly in rural communities. Our research will bring these voices into the conversation to help scholars learn from and respond to these essential community perspectives. In doing so, we will provide a more nuanced model of engineering career choice that can then be explored in other rural contexts. This work thus contributes to the research on career choice, rural education, and engineering education. © 2018 American Society for Engineering Education 
    more » « less
  3. Broadening participation in science, technology, engineering, and mathematics (STEM) is critical to the nation’s economic growth and national security. In K–12 and higher education, researchers and educators increasingly employ the concept of social capital to develop programs for improving STEM learning, motivation, and participation of young students. STEM social capital in education comprises STEM-oriented resources—whether instrumental, informational, or emotional—that students access through their social networks. Major theoretical perspectives, research evidence, and promising practices are associated with the concepts of social capital in STEM education. Students’ social capital in STEM education (derived from families, peers, teachers, and professional networks) demonstrably promotes their STEM educational outcomes and career paths. Inclusive STEM schools, mentoring, and after-school programs are some promising approaches that can enhance STEM social capital and outcomes of underrepresented students, particularly women, Blacks/Hispanics/Native Americans, youth with low socioeconomic status, and persons with disabilities. 
    more » « less
  4. Abstract BackgroundDetermining the root causes of persistent underrepresentation of different subpopulations in engineering remains a continued challenge. Because place‐based variation of resource distribution is not random and because school and community contexts influence high school outcomes, considering variation across those contexts should be paramount in broadening participation research. Purpose/HypothesisThis study takes a macroscopic systems view of engineering enrollments to understand variation across one state's public high school rates of engineering matriculation. Design/MethodThis study uses a dataset from the Virginia Longitudinal Data System that includes all students who completed high school from a Virginia public school from 2007 to 2014 (N= 685,429). We explore geographic variation in four‐year undergraduate engineering enrollment as a function of gender, race/ethnicity, and economically disadvantaged status. Additionally, we investigate the relationship between characteristics of the high school and community contexts and undergraduate engineering enrollment across Virginia's high schools using regression analysis. ResultsOur findings illuminate inequality in enrollment in engineering programs at four‐year institutions across high schools by gender, race, and socioeconomic status (and the intersections among those demographics). Different high schools have different engineering enrollment rates among students who attend four‐year postsecondary institutions. We show strong associations between high schools' engineering enrollment rates and four‐year institution enrollment rates as well as moderate associations for high schools' community socioeconomic status. ConclusionsStrong systemic forces need to be overcome to broaden participation in engineering. We demonstrate the insights that state longitudinal data systems can illuminate in engineering education research. 
    more » « less
  5. null (Ed.)
    To bridge the gap between the biological sciences (typically female-dominated) and engineering (typically male-dominated), biomedical engineering (BME) activities could potentially be used as a vehicle to alter female students' perception of engineering as a whole. Female's pursuit of STEM (Science, Technology, Engineering and Math) degrees is typically confined to the biological sciences and females earn a high proportion of degrees in nursing, psychology and the social sciences, yet male presence persists in physical sciences and engineering. Female's participation in engineering remains much lower than men at all degree levels. Here, research questions included do female high school students: 1) perceive engineering as relevant? 2) have an interest & aptitude towards exploring engineering in college and as a career? 3) have anxiety in terms of engineering? 4) have engineering "role-confidence"? Participants, a randomly selected pool of 28 high school students (almost exclusively female from schools throughout the DC Metro area) took part in a week-long, all-day workshop where they were exposed to female engineering mentors, peers, and activities tied to BME & Engineering. Pre and post surveys, adapted from standard STEM surveys, were administered to the pool of participants. Increases in confidence and interest in engineering and decreased anxiety were observed following female high school students' participation in hands-on activities in BME. 
    more » « less