skip to main content

This content will become publicly available on August 23, 2023

Title: The school stakeholder community as a source of capital for the talent development of black students in a high school engineering career academy
Purpose This paper aims to examine the role of school stakeholders (e.g. advisory board members, school administrators, parents, teachers and school board members) at a 99% black academy in promoting the achievement and broadening participation of high school black students in engineering career pathways. Design/methodology/approach The authors followed a qualitative case study design to explore the experiences of school stakeholders (e.g. students, district and school personnel and community partners) associated with the implementation of the career academy (Stake, 2006; Yin, 1994). Findings The authors found that the school relied heavily on the support of the community in the form of an advisory board – including university faculty and industry leaders – to actively develop culturally responsive strategies (e.g. American College Test preparation, work-based learning opportunities) to ensure the success of black students interested in pursuing career pathways in engineering. Thus, school stakeholders in the academy of engineering served as authentic leaders who inspired academy students by serving as role models and setting examples through what they do as engineering professionals. It was quite evident that the joy and fulfillment that these authentic leaders gained from using their talents directly or indirectly inspired students in the academy to seek out and more » cultivate the talents they are good at and passionate about as well (Debebe, 2017). Moreover, the career academy provided environmental or sociocultural conditions that promoted the development of learners’ gifts and talents (Plucker and Barab, 2005). Within that context, the goals of career academy school stakeholders were to support students in the discovery of what they are good at doing and to structure their educational experiences to cultivate their gifts into talents. Research limitations/implications It is also important to acknowledge that this study is not generalizable to the one million career academy students across the nation. Yet, the authors believe researchers should continue to examine the career academy advisory board as a source of capital for engaging and preparing diverse learners for success post-high school. Further research is needed to investigate how advisory boards support students’ in school and postsecondary outcomes, particularly for diverse students. Practical implications The authors highlight promising practices for schools to implement in establishing a diverse talent pipeline. Social implications On a theoretical level, the authors found important insights into the possibility of black students benefiting from a culturally responsive advisory board that provided social and cultural capital (e.g. aspirational, navigational and social) resources for their success. Originality/value While prior researchers have studied the positive impact of teachers in career academies as a contributor to social capital for students (Lanford and Maruco, 2019) and what diverse students bring to the classroom as a form of capital Debebe(Yosso, 2005), research has not identified the role of the advisory board (in its efforts to connect the broader community) as a vehicle for equipping ethnically and racially diverse students who come from economically disadvantaged backgrounds with social capital. Within that sense, the authors believe the advisory board at Stanton Academy relied on what the authors term local community capital to provide resources and supports for black students’ successful transition from high school into science, technology, engineering, and mathematics (STEM)-related college and career pathways. « less
Authors:
; ; ; ;
Award ID(s):
2000472
Publication Date:
NSF-PAR ID:
10351842
Journal Name:
European Journal of Training and Development
ISSN:
2046-9012
Sponsoring Org:
National Science Foundation
More Like this
  1. Mullen, Patrick (Ed.)
    Postsecondary readiness is critical to broadening opportunities for educational and career options beyond high school. However, Black males are often at a disadvantage to gaining access to postsecondary preparation and school counselors who can respond to their academic needs. Therefore, the purpose of this study was to explore the experiences and culturally responsive practices of school stakeholders (who are predominantly Black) from an academy of engineering (career academy). The authors used a case study approach to examine culturally responsive practices school personnel utilize to enhance the college and career readiness of Black males. Findings emphasize the role of culturally responsive practices (e.g., Black male role models from business and industry in the engineering field and school counselors), cultural matching, and the role of the advisory board in ensuring the success of Black male students. Recommendations for practice, policy, and research for Black males and school counselors are discussed.
  2. The topic of engineering identity is neither new nor complete in its coverage within current literature. In fact, although this body of work predates the last ten years, researchers have argued that some of the most significant burgeoning in this area has occurred in the last decade. By applying both quantitative and qualitative lenses to this inquiry, researchers have concluded that, much like a STEM identity, an engineering identity describes how students see themselves, their competence and potential for success in the academic and career context of the field. To further examine the latter component i.e. potential for academic and career success, we attend to an emerging concept of an entrepreneurial engineering identity. This preliminary work unfolded organically; the authors’ primary goal involved a larger Interpretative Phenomenological Analysis (IPA) study that investigated persistence and advanced degree aspirations among 20 Black male engineering undergraduate students from a variety of institutional settings. While we did not intentionally seek to examine this emerging component of engineering identity, our preliminary analysis of participants’ interview data led us down this path. What we observed was a latent phenomenon of interest among participants: these Black male engineering undergraduates recurringly articulated clear intentions for academic and careermore »opportunities that integrated business components into their engineering realities. Kegan’s (1984, 1994) Theory of Meaning-Making provided a framework for understanding how participants perceived the development of business acumen as a strategy for ascending existing corporate/organizational structures, creating new business pathways, and promoting corporate social responsibility. Based on these findings, authors were inspired to explore the conceptual development of an entrepreneurial engineering identity and its practical application to engineering degree (re)design, student academic advisory and career planning.« less
  3. Benjamin, L ; Henderson, J A ; Hines, E M (Ed.)
    The topic of engineering identity is neither new nor complete in its coverage within current literature. In fact, although this body of work predates the last ten years, researchers have argued that some of the most significant burgeoning in this area has occurred in the last decade. By applying both quantitative and qualitative lenses to this inquiry, researchers have concluded that, much like a STEM identity, an engineering identity describes how students see themselves, their competence and potential for success in the academic and career context of the field. To further examine the latter component i.e. potential for academic and career success, we attend to an emerging concept of an entrepreneurial engineering identity. This preliminary work unfolded organically; the authors’ primary goal involved a larger Interpretative Phenomenological Analysis (IPA) study that investigated persistence and advanced degree aspirations among 20 Black male engineering undergraduate students from a variety of institutional settings. While we did not intentionally seek to examine this emerging component of engineering identity, our preliminary analysis of participants’ interview data led us down this path. What we observed was a latent phenomenon of interest among participants: these Black male engineering undergraduates recurringly articulated clear intentions for academic and careermore »opportunities that integrated business components into their engineering realities. Kegan’s (1984, 1994) Theory of Meaning-Making provided a framework for understanding how participants perceived the development of business acumen as a strategy for ascending existing corporate/organizational structures, creating new business pathways, and promoting corporate social responsibility. Based on these findings, the authors were inspired to explore the conceptual development of an entrepreneurial engineering identity and its practical application to engineering degree (re)design, student academic advisory and career planning.« less
  4. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to whichmore »they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering.« less
  5. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6].more »The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley.« less