Abstract The Fezouata Biota (Morocco) is a unique Early Ordovician fossil assemblage. The discovery of this biota revolutionized our understanding of Earth’s early animal diversifications—the Cambrian Explosion and the Ordovician Radiation—by suggesting an evolutionary continuum between both events. Herein, we describe Taichoute, a new fossil locality from the Fezouata Shale. This locality extends the temporal distribution of fossil preservation from this formation into the upper Floian, while also expanding the range of depositional environments to more distal parts of the shelf. In Taichoute, most animals were transported by density flows, unlike thein-situpreservation of animals recovered in previously investigated Fezouata sites. Taichoute is dominated by three-dimensionally preserved, and heavily sclerotized fragments of large euarthropods—possibly representing nektobenthic/nektic bivalved taxa and/or hurdiid radiodonts. Resolving whether this dominance reflects a legitimate aspect of the original ecosystem or a preservational bias requires an in-depth assessment of the environmental conditions at this site. Nevertheless, Taichoute provides novel preservational and palaeontological insights during a key evolutionary transition in the history of life on Earth.
more »
« less
On the edge of exceptional preservation: insights into the role of redox state in Burgess Shale-type taphonomic windows from the Mural Formation, Alberta, Canada
Animals originated in the Neoproterozoic and ‘exploded’ into the fossil record in the Cambrian. The Cambrian also represents a high point in the animal fossil record for the preservation of soft tissues that are normally degraded. Specifically, fossils from Burgess Shale-type (BST) preservational windows give paleontologists an unparalleled view into early animal evolution. Why this time interval hosts such exceptional preservation, and why this preservational window declines in the early Paleozoic, have been long-standing questions. Anoxic conditions have been hypothesized to play a role in BST preservation, but recent geochemical investigations of these deposits have reached contradictory results with respect to the redox state of overlying bottom waters. Here, we report a multi-proxy geochemical study of the Lower Cambrian Mural Formation, Alberta, Canada. At the type section, the Mural Formation preserves rare recalcitrant organic tissues in shales that were deposited near storm wave base (a Tier 3 deposit; the worst level of soft-tissue preservation). The geochemical signature of this section shows little to no evidence of anoxic conditions, in contrast with published multi-proxy studies of more celebrated Tier 1 and 2 deposits. These data help confirm that ‘decay-limited’ BST biotas were deposited in more oxygenated conditions, and support a role for anoxic conditions in BST preservation. Finally, we discuss the role of iron reduction in BST preservation, including the formation of iron-rich clays and inducement of sealing seafloor carbonate cements. As oceans and sediment columns became more oxygenated and more sulfidic through the early Paleozoic, these geochemical changes may have helped close the BST taphonomic window.
more »
« less
- Award ID(s):
- 1747731
- PAR ID:
- 10074742
- Date Published:
- Journal Name:
- Emerging topics in life sciences
- ISSN:
- 2397-8562
- Page Range / eLocation ID:
- ETLS20170163
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is clear from modern analogue studies that O2-deficient conditions favor preservation of organic matter (OM) in fine-grained sedimentary rocks (black shales). It is also clear that appreciable productivity and OM flux to the sediment are required to establish and maintain these conditions. However, debates regarding redox controls on OM accumulation in black shales have mainly focused on oxic versus anoxic conditions, and the implications of different anoxic redox states remain unexplored. Here, we present detailed multi-proxy sedimentary geochemical studies of major Paleozoic and Mesozoic North American black shale units to elucidate their depositional redox conditions. This is the first broad-scale study to use a consistent geochemical methodology and to incorporate data from Fe-speciation – presently the only redox proxy able to clearly distinguish anoxic depositional conditions as ferruginous (H2S-limited) or euxinic (H2S-replete, Fe-limited). These data are coupled with total organic carbon (TOC), programmed pyrolysis, and redox-sensitive trace element proxies, with almost all measurements analyzed using the same geochemical methodology. Consistent with expectations based on previous geochemical and paleontological/ichnological studies, these analyses demonstrate that the study units were almost exclusively deposited under anoxic bottom waters. These analyses also demonstrate that there is wide variance in the prevalence of euxinic versus ferruginous conditions, with many North American black shale units deposited under predominantly ferruginous or oscillatory conditions. TOC is significantly higher under euxinic bottom waters in analyses of both preserved (present day) TOC and reconstructed initial TOC values, although sediments deposited under both redox states do have economically viable TOC content. While this correlation does not reveal the mechanism behind higher organic enrichment in euxinic environments, which may be different in different basins, it does open new research avenues regarding resource exploration and the biogeochemistry of ancient reducing environments.more » « less
-
Terrestrial environments have been suggested as an oxic haven for eukaryotic life and diversification during portions of the Proterozoic Eon when the ocean was dominantly anoxic. However, iron speciation and Fe/Al data from the ca. 1.1-billion-year-old Nonesuch Formation, deposited in a large lake and bearing a diverse assemblage of early eukaryotes, are interpreted to indicate persistently anoxic conditions. To shed light on these distinct hypotheses, we analyzed two drill cores spanning the transgression into the lake and its subsequent shallowing. While the proportion of highly reactive to total iron (Fe HR /Fe T ) is consistent through the sediments and typically in the range taken to be equivocal between anoxic and oxic conditions, magnetic experiments and petrographic data reveal that iron exists in three distinct mineral assemblages resulting from an oxycline. In the deepest waters, reductive dissolution of iron oxides records an anoxic environment. However, the remainder of the sedimentary succession has iron oxide assemblages indicative of an oxygenated environment. At intermediate water depths, a mixed-phase facies with hematite and magnetite indicates low oxygen conditions. In the shallowest waters of the lake, nearly every iron oxide has been oxidized to its most oxidized form, hematite. Combining magnetics and textural analyses results in a more nuanced understanding of ambiguous geochemical signals and indicates that for much of its temporal duration, and throughout much of its water column, there was oxygen in the waters of Paleolake Nonesuch.more » « less
-
null (Ed.)The extent to which Paleozoic oceans differed from Neoproterozoic oceans and the causal relationship between biological evolution and changing environmental conditions are heavily debated. Here, we report a nearly continuous record of seafloor redox change from the deep-water upper Cambrian to Middle Devonian Road River Group of Yukon, Canada. Bottom waters were largely anoxic in the Richardson trough during the entirety of Road River Group deposition, while independent evidence from iron speciation and Mo/U ratios show that the biogeochemical nature of anoxia changed through time. Both in Yukon and globally, Ordovician through Early Devonian anoxic waters were broadly ferruginous (nonsulfidic), with a transition toward more euxinic (sulfidic) conditions in the mid–Early Devonian (Pragian), coincident with the early diversification of vascular plants and disappearance of graptolites. This ~80-million-year interval of the Paleozoic characterized by widespread ferruginous bottom waters represents a persistence of Neoproterozoic-like marine redox conditions well into the Phanerozoic.more » « less
-
Abstract Konservat-Lagerstätten—deposits with exceptionally preserved fossils—vary in abundance across geographic and stratigraphic space due to paleoenvironmental heterogeneity. While oceanic anoxic events (OAEs) may have promoted preservation of marine lagerstätten, the environmental controls on their taphonomy remain unclear. Here, we provide new data on the mineralization of fossils in three Lower Jurassic Lagerstätten—Strawberry Bank (UK), Ya Ha Tinda (Canada), and Posidonia Shale (Germany) —and test the hypothesis that they were preserved under similar conditions. Biostratigraphy indicates that all three Lagerstätten were deposited during the Toarcian OAE (TOAE), and scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) show that each deposit contains a variety of taxa preserved as phosphatized skeletons and tissues. Thus, despite their geographic and paleoenvironmental differences, all of these Lagerstätten were deposited in settings conducive to phosphatization, indicating that the TOAE fostered exceptional preservation in marine settings around the world. Phosphatization may have been fueled by phosphate delivery from climatically-driven sea level change and continental weathering, with anoxic basins acting as phosphorus traps.more » « less