skip to main content


Title: Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy
Terrestrial environments have been suggested as an oxic haven for eukaryotic life and diversification during portions of the Proterozoic Eon when the ocean was dominantly anoxic. However, iron speciation and Fe/Al data from the ca. 1.1-billion-year-old Nonesuch Formation, deposited in a large lake and bearing a diverse assemblage of early eukaryotes, are interpreted to indicate persistently anoxic conditions. To shed light on these distinct hypotheses, we analyzed two drill cores spanning the transgression into the lake and its subsequent shallowing. While the proportion of highly reactive to total iron (Fe HR /Fe T ) is consistent through the sediments and typically in the range taken to be equivocal between anoxic and oxic conditions, magnetic experiments and petrographic data reveal that iron exists in three distinct mineral assemblages resulting from an oxycline. In the deepest waters, reductive dissolution of iron oxides records an anoxic environment. However, the remainder of the sedimentary succession has iron oxide assemblages indicative of an oxygenated environment. At intermediate water depths, a mixed-phase facies with hematite and magnetite indicates low oxygen conditions. In the shallowest waters of the lake, nearly every iron oxide has been oxidized to its most oxidized form, hematite. Combining magnetics and textural analyses results in a more nuanced understanding of ambiguous geochemical signals and indicates that for much of its temporal duration, and throughout much of its water column, there was oxygen in the waters of Paleolake Nonesuch.  more » « less
Award ID(s):
1642268 1339505
NSF-PAR ID:
10082829
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
51
ISSN:
0027-8424
Page Range / eLocation ID:
12938 to 12943
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Constraints on Precambrian ocean chemistry are dependent upon sediment geochemistry. However, diagenesis and metamorphism can destroy primary biosignatures, making it difficult to consider biology when interpreting geochemical data. Modern analogues for ancient ecosystems can be useful tools for identifying how sediment geochemistry records an active biosphere. The Middle Island Sinkhole (MIS) in Lake Huron is an analogue for shallow Proterozoic waters due to its low oxygen water chemistry and microbial communities that exhibit diverse metabolic functions at the sediment–water interface. This study uses sediment trace metal contents and microbial abundances in MIS sediments and an oxygenated Lake Huron control site (LH) to infer mechanisms for trace metal burial. The adsorption of trace metals to Mn‐oxyhydroxides is a critical burial pathway for metals in oxic LH sediments, but not for the MIS mat and sediments, consistent with conventional understanding of Mn cycling. Micronutrient trace metals (e.g., Zn) are associated with organic matter regardless of oxygen and sulfide availability. Although U and V are conventionally considered to be organically complexed in suboxic and anoxic conditions, U and organic covary in oxic LH sediments, and Mn‐oxyhydroxide cycling dominates V deposition in the anoxic MIS sediments. Significant correlations between Mo and organic matter across all redox regimes have major implications for our interpretations of Mo isotope systematics in the geologic record. Finally, while microbial groups vary between the sampling locales (e.g., the cyanobacteria in the MIS microbial mat are not present in LH sediments), LH and MIS ultimately have similar relationships between microbial assemblages and metal burial, making it difficult to link trace metal burial to microbial metabolisms. Together, these results indicate that bulk sediment trace metal composition does not capture microbiological processes; more robust trace metal geochemistry such as isotopes and speciation may be critical for understanding the intersections between microbiology and sediment geochemistry.

     
    more » « less
  2. Abstract

    Careful evaluation of the local geochemical conditions in past marine settings can provide a window to the average redox state of the global ocean during episodes of extensive organic carbon deposition. These comparisons aid in identifying the interplay between climate and biotic feedbacks contributing to and resulting from these events. Well‐documented examples are known from the Mesozoic Era, which is characterized by episodes of widespread organic carbon deposition known as Oceanic Anoxic Events. This organic carbon burial typically leads to coeval positive carbon‐isotope excursions. Geochemical data are presented here for several palaeoredox proxies (Cr/Ti, V, Mo, Zn, Mn, Fe speciation, I/Ca and sulphur isotopes) from a section exposed at Furlo in the Marche–Umbrian Apennines of Italy that spans the Cenomanian–Turonian boundary. Here, Oceanic Anoxic Event 2 is represented by aca1 m thick radiolarian‐rich millimetre‐laminated organic‐rich shale known locally as the Bonarelli Level. Iron speciation data for thin organic‐rich intervals observed below the Bonarelli Level imply a local redox shift going into the Oceanic Anoxic Event, with ferruginous conditions (i.e. anoxic with dissolved ferrous iron) transiently developed prior to the event and euxinia (i.e. anoxic and sulphidic bottom waters) throughout the event itself. Pre‐Oceanic Anoxic Event enrichments of elements sensitive to anoxic water columns were due to initial development of locally ferruginous bottom waters as a precursor to the event. However, the greater global expanse of dysoxic to euxinic conditions during the Oceanic Anoxic Event greatly reduced redox‐sensitive trace‐metal concentrations in seawater. Pyrite sulphur isotopes document a positive excursion during the Oceanic Anoxic Event. Carbonate I/Ca ratios were generally low, suggesting locally reduced bottom‐water oxygen conditions preceding the event and relatively increased oxygen concentrations post‐event. Combined, the Furlo geochemical data suggest a redox‐stratified water column with oxic surface waters and a shallow chemocline overlying locally ferruginous bottom waters preceding the event, globally widespread euxinic bottom waters during the Oceanic Anoxic Event, followed by chemocline shallowing but sustained local redox stratification following the event.

     
    more » « less
  3. Abstract

    This study evaluates rates and pathways of methane (CH4) oxidation and uptake using14C‐based tracer experiments throughout the oxic and anoxic waters of ferruginous Lake Matano. Methane oxidation rates in Lake Matano are moderate (0.36 nmol L−1 day−1to 117 μmol L−1 day−1) compared to other lakes, but are sufficiently high to preclude strong CH4fluxes to the atmosphere. In addition to aerobic CH4oxidation, which takes place in Lake Matano's oxic mixolimnion, we also detected CH4oxidation in Lake Matano's anoxic ferruginous waters. Here, CH4oxidation proceeds in the apparent absence of oxygen (O2) and instead appears to be coupled to some as yet uncertain combination of nitrate (), nitrite (), iron (Fe) or manganese (Mn), or sulfate () reduction. Throughout the lake, the fraction of CH4carbon that is assimilated vs. oxidized to carbon dioxide (CO2) is high (up to 93%), indicating extensive CH4conversion to biomass and underscoring the importance of CH4as a carbon and energy source in Lake Matano and potentially other ferruginous or low productivity environments.

     
    more » « less
  4. null (Ed.)
    Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill. 
    more » « less
  5. none. (Ed.)
    Foraminifera are single celled organisms that have tests that are composed of calcium carbonate or detrital materials. The assemblages of foraminifera have been influenced by their immediate environment which depict the influence and results of man’s activities and other natural processes that occur in the environment. These environmental changes include salinity, pH, hydrocarbon pollution and organic matter. With these factors, paleoenvironmental interpretations are made by identifying the different patterns in the foraminifera communities. Variations in oxygen concentrations at the sediment-water interface have a significant impact on benthic foraminiferal assemblages and morphologic properties. This is seen in the vertical distribution of foraminifera in response to factors such as food, pore water, and oxygen. This study documents foraminiferal ecology and abundances across an oxygen transect off the coast of San Diego. Available oxygen ranges from >1.0ml/l are considered oxic; O2 values from 0.1 - 1.0ml/l will be considered dysoxic and O2 values <0.10ml/l will be considered anoxic. Previous work in this region has suggested that sediment grain size, rather than oxygen availability, may have as much of an impact on foraminiferal assemblages. These observations were made based on the fact that Cibicidoides wuellerstorfi, an epibenthic foraminifera preferring elevated substrates in well-oxygenated environments, were found in greater abundances at areas with coarser grained materials despite low available oxygen. C. wuellerstorfi has also been found to have I/Ca and test porosity (size and abundance of pores on the surface of the test) which correlate to the available oxygen in bottom waters at the time of test formation. Not only will this study document foraminiferal assemblages and abundances across an oxygen transect, but C. wuellerstorfi from key oxygen environments will be examined under SEM and used in porosity and I/Ca analyses which will contribute to the development of a quantitative oxygen proxy. The development of this quantitative oxygen proxy is essential because despite oxygen being one of the primary variables influencing major geochemical and faunal responses within the world’s ocean, no clear proxy currently exists in paleoceanographic reconstructions. 
    more » « less