skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Duality Constraints on Counterterms in Supergravities
Abstract The UV finiteness found in calculations of the 4‐point amplitude insupergravity at loop orderhas not been explained, which motivates our study of the relevant superspace invariants and on‐shell superamplitudes for bothand. The local 4‐point superinvariants forare expected to have nonlinear completions whose 6‐point amplitudes have non‐vanishing SSL's (soft scalar limits), violating the behavior required of Goldstone bosons. For, we find atthat local 6‐point superinvariant and superamplitudes, which might cancel these SSL's, do not exist. This rules out the candidate 4‐point counterterm and thus gives a plausible explanation of the observedfiniteness. However, atwe construct a local 6‐point superinvariant with non‐vanishing SSL's, so the SSL argument does not explain the observedUV finiteness. Forsupergravity there are no 6‐point invariants at eitheror 4, so the SSL argument predicts UV finiteness.  more » « less
Award ID(s):
1720397
PAR ID:
10074771
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Fortschritte der Physik
Volume:
66
Issue:
10
ISSN:
0015-8208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The air‐sea exchange of oxygen (O2) is driven by changes in solubility, biological activity, and circulation. The total air‐sea exchange of O2has been shown to be closely related to the air‐sea exchange of heat on seasonal timescales, with the ratio of the seasonal flux of O2to heat varying with latitude, being higher in the extratropics and lower in the subtropics. This O2/heat ratio is both a fundamental biogeochemical property of air‐sea exchange and a convenient metric for testing earth system models. Current estimates of the O2/heat flux ratio rely on sparse observations of dissolved O2, leaving it fairly unconstrained. From a model ensemble we show that the ratio of the seasonal amplitude of two atmospheric tracers, atmospheric potential oxygen (APO) and the argon‐to‐nitrogen ratio (Ar/O2), exhibits a close relationship to the O2/heat ratio of the extratropics (40–). The amplitude ratio,/, is relatively constant within the extratropics of each hemisphere due to the zonal mixing of the atmosphere./is not sensitive to atmospheric transport, as most of the observed spatial variability in the seasonal amplitude ofAPO is compensated by similar variations in(Ar/). From the relationship between/heat and/in the model ensemble, we determine that the atmospheric observations suggest hemispherically distinct/heat flux ratios of 3.30.3 and 4.70.8 nmolbetween 40 andin the Northern and Southern Hemispheres respectively, providing a useful constraint forand heat air‐sea fluxes in earth system models and observation‐based data products. 
    more » « less
  2. Abstract We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer. 
    more » « less
  3. Abstract Vigorous convection in Earth's outer core led to the suggestion that it is chemically homogeneous. However, there is increasing seismic evidence for structural complexities close to the outer core's upper and lower boundaries. Both body waves and normal mode data have been used to estimate awave velocity,, at the top of the outer core (thelayer), which is lower than that in the Preliminary Reference Earth Model. However, these lowmodels do not agree on the form of this velocity anomaly. One reason for this is the difficulty in retrieving and measuringarrival times. To address this issue, we propose a novel approach using data from seismic arrays to iteratively measure‐differential travel times. This approach extracts individualsignal from mixed waveforms of theseries, allowing us to reliably measure differential travel times. We successfully use this method to measuretime delays from earthquakes in the Fiji‐Tonga and Vanuatu subduction zones.time delays are measured by waveform cross correlation betweenand, and the cross‐correlation coefficient allows us to access measurement quality. We also apply this iterative scheme to syntheticseismograms to investigate the 3‐D mantle structure's effects. The mantle structure corrections are not negligible for our data, and neglecting them could bias theestimation of uppermost outer core. After mantle structure corrections, we can still see substantial time delays of,, and, supporting a lowat the top of Earth's outer core. 
    more » « less
  4. Abstract In field observations from a sinuous estuary, the drag coefficientbased on the momentum balance was in the range of, much greater than expected from bottom friction alone.also varied at tidal and seasonal timescales.was greater during flood tides than ebbs, most notably during spring tides. The ebb tidewas negatively correlated with river discharge, while the flood tideshowed no dependence on discharge. The large values ofare explained by form drag from flow separation at sharp channel bends. Greater water depths during flood tides corresponded with increased values of, consistent with the expected depth dependence for flow separation, as flow separation becomes stronger in deeper water. Additionally, the strength of the adverse pressure gradient downstream of the bend apex, which is indicative of flow separation, correlated withduring flood tides. Whilegenerally increased with water depth,decreased for the highest water levels that corresponded with overbank flow. The decrease inmay be due to the inhibition of flow separation with flow over the vegetated marsh. The dependence ofduring ebbs on discharge corresponds with the inhibition of flow separation by a favoring baroclinic pressure gradient that is locally generated at the bend apex due to curvature‐induced secondary circulation. This effect increases with stratification, which increases with discharge. Additional factors may contribute to the high drag, including secondary circulation, multiple scales of bedforms, and shallow shoals, but the observations suggest that flow separation is the primary source. 
    more » « less
  5. Abstract We consider the mapping properties of the integral operator arising in nonlocal slender body theory (SBT) for the model geometry of a straight, periodic filament. It is well known that the classical singular SBT integral operator suffers from high wavenumber instabilities, making it unsuitable for approximating theslender body inverse problem, where the fiber velocity is prescribed and the integral operator must be inverted to find the force density along the fiber. Regularizations of the integral operator must therefore be used instead. Here, we consider two regularization methods: spectral truncation and the‐regularization of Tornberg and Shelley (2004). We compare the mapping properties of these approximations to the underlying partial differential equation (PDE) solution, which for the inverse problem is simply the Stokes Dirichlet problem with data constrained to be constant on cross sections. For the straight‐but‐periodic fiber with constant radius, we explicitly calculate the spectrum of the operator mapping fiber velocity to force for both the PDE and the approximations. We prove that the spectrum of the original SBT operator agrees closely with the PDE operator at low wavenumbers but differs at high frequencies, allowing us to define a truncated approximation with a wavenumber cutoff. For both the truncated and‐regularized approximations, we obtain rigorous‐based convergence to the PDE solution as: A fiber velocity withregularity givesconvergence, while a fiber velocity with at leastregularity yieldsconvergence. Moreover, we determine the dependence of the‐regularized error estimate on the regularization parameter. 
    more » « less