skip to main content


Title: Undergraduate STEM Students and Community Engagement Activities: Initial Findings from an Assessment of Their Concern for Public Well-being
In response to findings from the Cech study on the Culture of Disengagement at American engineering institutions, much concern has emerged regarding how future engineers might not be developing a mindset that places the public’s well-being as a foremost priority. This, of course, could have an important bearing on the type of professionals that academic institutions are sending out into the world. Many candidate explanations could presumably emerge in terms of why students become “disengaged”, including practical worries about obtaining a job or paying off debt from college. Against this theoretical backdrop, our research team is in the process of investigating what may help to combat, or at least mitigate, this type of problem. In other words, we are seeking to identify which specific facets of community engagement activities contribute to or fortify the concern that engineering and other STEM students have for the well-being of the public. Our team is in the process of embarking on a five-year grant funded project to study the effects of a broad range of community engagement activities, both inside and outside of the classroom.  more » « less
Award ID(s):
1635554
NSF-PAR ID:
10074906
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition
Volume:
2018
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our research team is currently conducting an ethnographic investigation of a Science, Technology, and Society Living Learning Community (STS-LLC). Our investigation focuses on understanding how engineering students’ macro-ethical reasoning develops within the cultural practices of this community. Our approach to this investigation deliberately partners faculty research leads and a group of undergraduate research fellows (RFs) chosen based on their “insider” status within the STS-LLC cohort being investigated. This collaboration required building substantial infrastructure and routines for disrupting the usual hierarchies that exist between researchers and “participants.” This paper will share multiple perspectives, from both RFs and research leads, on the mutually beneficial relationships that emerged within this research collaboration. We will draw on research team meeting notes, research team meeting recordings, and formative feedback survey responses to support our claims. Research leads will share their perspectives on recruiting, onboarding and working with the RFs and describe some of the macro-ethical considerations that motivated their partnership with RFs. RFs will also describe the multiplicity of ways they have participated in and benefited from this research collaboration. This paper will share sociotechnical innovations that supported the development of effective co-learning and co-working processes. These innovations will be described both in terms of the activities, routines, and artifacts that structured our work and the purposes these activities served. Some innovations were constructed by the research leads in order to: (a) support collaboration and mutual engagement, (b) support engineering students in developing competence with ethnographic methods, (c) expand awareness of the engineering education research literature, (d) empower students to refine their own thinking about macroethics and the purpose of education, (e) recognize particular “knowledge-building” games within research activities, and (f) create space for students’ values and political agendas to shape the direction of the research. We will share some example innovations that were iteratively refined in dialogue with RFs and other example innovations that were developed through the process of coworking with RFs, such as GroupMe communication channels, multi-vocal field noting, and prompts for scaffolding reflections on classroom events. We will describe how the deliberate social and technical organization of this collaboration enabled particular forms of mutually beneficial relationships. 
    more » « less
  2. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less
  3. The purpose of this research study is to understand teacher experiences throughout their second year of engagement in the Virginia Tech Partnering with Educators and Engineers in Rural Schools partnership. This partnership is an assets-based community partnership in a rural environment between middle school teachers, regional industry, and university affiliates that is focused on implementing recurrent, hands-on, culturally relevant engineering activities for middle school students. This qualitative study uses constant comparative methodology informed by grounded theory on teacher interviews to capture both teacher experiences in the partnership as well as teacher-identified assets in their classrooms and school communities. Using the sensitizing concepts of pedagogical content knowledge, self-efficacy, and the Interconnected Model of Teacher Growth, this study found that while teachers experienced the program differently depending on their contextual setting of their schools, all teachers expressed shifts in their recognition of and value placed on community assets. Findings also suggest that teachers greatly value involving industry and university partners in the classroom to highlight the applications of engineering in their communities and support a reimagination of engineering conceptions and careers for both students and teachers. Teachers reported that the hands-on, team-based, culturally relevant engineering activities engaged learners and showcased individual strengths in ways they otherwise do not see exhibited in their traditional curriculum. The partnership ultimately allowed teachers to identify how assets in schools’ rural communities, beyond those previously identified within their schools, could aid them in further developing and implementing engineering activities. With teachers serving as role models for students, it is important to support teachers’ reimagination of engineering conceptions and integration into the classroom to ultimately increase students’ engineering engagement. Our findings highlight the value of community-based approaches in supporting engineering integration in the classroom and describe the assets that teachers note as being the most significant in their community. 
    more » « less
  4. In 2017, the report Undergraduate Research Experiences for STEM Students from the National Academy of Science and Engineering and Medicine (NASEM) invited research programs to develop experiences that extend from disciplinary knowledge and skills education. This call to action asks to include social responsibility learning goals in ethical development, cultural issues in research, and the promotion of inclusive learning environments. Moreover, the Accreditation Board for Engineering and Technology (ABET), the National Academy of Engineering (NAE), and the National Science Foundation (NSF) all agree that social responsibility is a significant component of an engineer’s professional formation and must be a guiding force in their education. Social Responsibility involves the ethical obligation engineers have to society and the environment, including responsible conduct research (RCR), ethical decision-making, human safety, sustainability, pro bono work, social justice, and diversity. For this work, we explored the views of Social Responsibility in engineering students that could provide insight into developing formal and informal educational activities for future summer programs. In this exploratory multi-methods study, we investigated the following research question: What views of social responsibility are important for engineering students conducting scientific in an NSF Research Experiences for Undergraduates (REU)? The REU Site selected for this study was a college of engineering located at a major, public, comprehensive, land-grant research university. The Views of Social Responsibility of Scientists and Engineers (VSRoSE) was used to guide our research design. This validated instrument considers the following major social responsibility elements: 1) Consideration of societal consequences, 2) Protection of human welfare and safety, 3) Promotion of environmental sustainability, 4) Efforts to minimize risks, 5) Communication with the public, and 6) Service and Community engagement. Data collection was conducted at the end of their 10-week-long experience in Summer 2022 using Qualtrics. REU students were invited to complete an IRB-approved questionnaire, including collecting demographic data, the VSRoSE-validated survey, and open-ended questions. Open-ended questions were used to explore what experiences have influenced positive student views of social responsibility and provide rich information beyond the six elements of the VSRoSE instrument. The quantitative data from the VSRoSE is analyzed using SPSS. The qualitative data is analyzed by the research team using an inductive coding approach. In this coding process, the researchers derive codes from the data allowing the narrative or theory to emerge from the raw data itself, which is great for exploratory research. The results from this exploratory study will help to strategically initiate a formal and informal research education curriculum at the selected university. In addition, the results may serve as a way for REU administrators and faculty to create metrics of impact on their research activities regarding social responsibility. Finally, this work intends to provoke the ethics and research community to have a deeper conversation about the needs and strategies to educate this unique population of students. 
    more » « less
  5. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST) is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Both the academic and industrial worlds are seeking ways to utilize SST, however, there is a significant gap between the engineering science in academia and engineering practice in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina collaborated with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program intends to train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry is expected to establish a virtuous circle for knowledge exchange and contribute to advancing fundamental research and implementation of SST. The program features: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program provides engineering undergraduate students with unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that would facilitate a meaningful REU experience. Recruitment of participants targeted 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and could be adapted to other disciplines. In this paper, the details of the first-year program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development and implementation of the program will be discussed. The preliminary evaluation results and recommendations will also be shared. 
    more » « less