The purpose of this research study is to understand teacher experiences throughout their second year of engagement in the Virginia Tech Partnering with Educators and Engineers in Rural Schools partnership. This partnership is an assets-based community partnership in a rural environment between middle school teachers, regional industry, and university affiliates that is focused on implementing recurrent, hands-on, culturally relevant engineering activities for middle school students. This qualitative study uses constant comparative methodology informed by grounded theory on teacher interviews to capture both teacher experiences in the partnership as well as teacher-identified assets in their classrooms and school communities. Using the sensitizing concepts of pedagogical content knowledge, self-efficacy, and the Interconnected Model of Teacher Growth, this study found that while teachers experienced the program differently depending on their contextual setting of their schools, all teachers expressed shifts in their recognition of and value placed on community assets. Findings also suggest that teachers greatly value involving industry and university partners in the classroom to highlight the applications of engineering in their communities and support a reimagination of engineering conceptions and careers for both students and teachers. Teachers reported that the hands-on, team-based, culturally relevant engineering activities engaged learners and showcased individual strengthsmore »
Undergraduate STEM Students and Community Engagement Activities: Initial Findings from an Assessment of Their Concern for Public Well-being
In response to findings from the Cech study on the Culture of Disengagement at American engineering institutions, much concern has emerged regarding how future engineers might not be developing a mindset that places the public’s well-being as a foremost priority. This, of course, could have an important bearing on the type of professionals that academic institutions are sending out into the world. Many candidate explanations could presumably emerge in terms of why students become “disengaged”, including practical worries about obtaining a job or paying off debt from college. Against this theoretical backdrop, our research team is in the process of investigating what may help to combat, or at least mitigate, this type of problem. In other words, we are seeking to identify which specific facets of community engagement activities contribute to or fortify the concern that engineering and other STEM students have for the well-being of the public. Our team is in the process of embarking on a five-year grant funded project to study the effects of a broad range of community engagement activities, both inside and outside of the classroom.
- Award ID(s):
- 1635554
- Publication Date:
- NSF-PAR ID:
- 10074906
- Journal Name:
- ASEE annual conference & exposition
- Volume:
- 2018
- ISSN:
- 2153-5965
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affectmore »
-
In this work-in-progress paper we present emergent recruitment issues encountered during an ongoing design-based project with participants from two-year colleges for an NSF-funded scholarship program. Our hope is to connect with researchers who have previously explored similar issues or may be experiencing them in their current work. Student Pathways in Engineering and Computing for Transfer Students (SPECTRA) is an NSF S-STEM program that provides financial assistance to students transferring from the South Carolina Technical College System into Engineering or Computing majors at Clemson University [1]. SPECTRA also assists students by connecting them with peers at the technical colleges who move together through the transfer process to Clemson and are supported by the SPECTRA program until graduation. In addition to exploring the experiences of current SPECTRA participants, we investigate how the project can be scaled to include more students and sustained after NSF support ends. The 2021-2022 academic year is the third of the five-year program, although, given emergent recruitment issues, we foresee application for a no-cost extension. The primary concern is the low number of students currently supported in comparison to our goals, highlighting recruitment for further examination. We planned to support up to twenty students in year 1, 52more »
-
With increasing demands for high performance in structural systems, Smart Structures Technologies (SST) is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Both the academic and industrial worlds are seeking ways to utilize SST, however, there is a significant gap between the engineering science in academia and engineering practice in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina collaborated with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program intends to train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry is expected to establish a virtuous circle for knowledge exchange and contribute to advancing fundamental research and implementation of SST. The program features: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes tomore »
-
With increasing demands for high performance in structural systems, Smart Structures Technologies (SST) is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Both the academic and industrial worlds are seeking ways to utilize SST, however, there is a significant gap between the engineering science in academia and engineering practice in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina collaborated with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program intends to train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry is expected to establish a virtuous circle for knowledge exchange and contribute to advancing fundamental research and implementation of SST. The program features: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes tomore »