skip to main content


Title: Kinetic Control in the Regioselective Alkylation of Pterin Sensitizers: A Synthetic, Photochemical, and Theoretical Study
Abstract

Alkylation patterns and excited‐state properties of pterins were examined both experimentally and theoretically. 2DNMRspectroscopy was used to characterize the pterin derivatives, revealing undoubtedly that the decyl chains were coupled to either the O4 or N3 sites on the pterin. At a temperature of 70°C, the pterin alkylation regioselectively favored the O4 over the N3. The O4 was also favored when using solvents, in which the reactants had increased solubility, namelyN,N‐dimethylformamide andN,N‐dimethylacetamide, rather than solvents in which the reactants had very low solubility (tetrahydrofuran and dichloromethane). Density functional theory (DFT) computed enthalpies correlate to regioselectivity being kinetically driven because the less stable O‐isomer forms in higher yield than the more stable N‐isomer. Once formed these compounds did not interconvert thermally or undergo a unimolecular “walk” rearrangement. Mechanistic rationale for the factors underlying the regioselective alkylation of pterins is suggested, where kinetic rather than thermodynamic factors are key in the higher yield of theO‐isomer. Computations also predicted greater solubility and reduced triplet state energetics thereby improving the properties of the alkylated pterins as1O2sensitizers. Insight on thermal and photostability of the alkylated pterins is also provided.

 
more » « less
NSF-PAR ID:
10075028
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
94
Issue:
5
ISSN:
0031-8655
Page Range / eLocation ID:
p. 834-844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intralipid is a lipid emulsion used in photodynamic therapy (PDT) for its light scattering and tissue‐simulating properties. The purpose of this study is to determine whether or not Intralipid undergoes photooxidation, and we have carried out an Intralipid peroxide trapping study using a series of phosphines [2′‐dicyclohexylphosphino‐2,6‐dimethoxy‐1,1′‐biphenyl‐3‐sulfonate, 3‐(diphenylphosphino)benzenesulfonate, triphenylphosphine‐3,3′,3′′‐trisulfonate and triphenylphosphine]. Our new findings are as follows: (1) An oxygen atom is transferred from Intralipid peroxide to the phosphine traps in the dark, after the photooxidation of Intralipid. 3‐(Diphenylphosphino)benzenesulfonate is the most suitable trap in the series owing to a balance of nucleophilicity and water solubility. (2) Phosphine trapping and monitoring by31PNMRare effective in quantifying the peroxides in H2O. An advantage of the technique is that peroxides are detected in H2O; deuteratedNMRsolvents are not required. (3) The percent yield of the peroxides increased linearly with the increase in fluence from 45 to 180 J cm−2based on our trapping experiments. (4) The photooxidation yields quantitated by the phosphines and31PNMRare supported by the direct1HNMRdetection using deuteratedNMRsolvents. These data provide the first steps in the development of Intralipid peroxide quantitation afterPDTusing phosphine trapping and31PNMRspectroscopy.

     
    more » « less
  2. Rationale

    It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values.

    Methods

    We evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years.

    Results

    Tissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰).

    Conclusions

    The effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

     
    more » « less
  3. 1. Ants are widely regarded as ‘ecosystem engineers’ because their nest construction and contributions to nutrient cycling change the biological, chemical, and physical properties of the soil around their nests. Despite increasing attention to ant manipulation of soil ecosystems, the extent to which many common species influence soil properties, as well as nutrient uptake and community composition of plants near nests, is still unknown.

    2. This study tested hypotheses that activities of a common subalpine ant,Formica podzolica, alter soil moisture and pH, redistribute nitrogen around nests, and affect plant species abundance and ground cover.

    3. A combination of field sampling techniques showed that distance from a nest had a positive relationship with soil moisture and a negative relationship with plant abundance next to and downhill from nests. Slope aspect also affected plant communities, with downhill transects having higher plant cover and above‐ground biomass than uphill transects. A stable isotope analysis did not reveal that plants near nests had enriched15N, but there were substantial differences in15N among sites.

    4. Overall, this study uncovers significant impacts ofF. podzolicaon the subalpine microhabitats directly surrounding their nests.

     
    more » « less
  4. Abstract Rationale

    The use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS).

    Methods

    Paired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

    Results

    Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference.

    Conclusions

    The noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear.

     
    more » « less
  5. Abstract

    Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns inAAisotope fractionation in birds. We conducted a controlledCSIAfeeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individualAAcarbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐Dand Δ15NC‐D, respectively). We found that essentialAAδ13C values and sourceAAδ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessentialAAΔ13CC‐Dvalues reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe= 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Pheequation with the avian‐specificTDFGlu‐Phevalue from our experiment provided estimates that were more ecologically realistic than estimates using a singleTDFGlu‐Pheof 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use ofCSIAin nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.

     
    more » « less