skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of chemical preservation on bulk and amino acid isotope ratios of zooplankton, fish, and squid tissues
RationaleIt is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values. MethodsWe evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years. ResultsTissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰). ConclusionsThe effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.  more » « less
Award ID(s):
1637632
PAR ID:
10460918
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
33
Issue:
10
ISSN:
0951-4198
Format(s):
Medium: X Size: p. 935-945
Size(s):
p. 935-945
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Investigating the foraging ecology and trophic interactions of threatened marine predators is critical to assess how community changes due to anthropogenic activities will affect predator–prey relationships. Two species of threatened coastal dolphins, the Indian Ocean humpback dolphin (Sousa plumbea) and the Indo‐Pacific bottlenose dolphin (Tursiops aduncus), occur off Nosy Be, north‐western Madagascar, in a region where artisanal fisheries are ecologically and socioeconomically important. Here, we investigated the feeding ecology of these two coastal dolphins and their trophic interactions with four other odontocetes using bulk stable carbon and nitrogen isotope analysis (δ13C andδ15N). Humpback dolphins had significantly enrichedδ13C values, reflecting a preference for coastal/benthic prey. Bottlenose dolphins had a broader isotopic niche, suggesting a broader range of prey and foraging habitats. The overlap in isotopic niche of all six odontocete species was limited, indicating partitioning of resources and habitats. Bayesian mass‐balance isotopic mixing models revealed that humpback dolphins forage primarily on reef planktivores (38.9%) and inner reef mesopredators (20.5%), while bottlenose dolphins had a broader diet, including reef‐associated (15%–32%) and pelagic prey (12%–23%). Our study reveals that the reliance on inshore prey by humpback dolphins may place them in competition with coastal fisheries. 
    more » « less
  2. Abstract RationaleStable isotope analysis (SIA) of free‐swimming mysticetes using biopsies is often limited in sample size and uses only one sample per individual, failing to capture both intra‐individual variability and the influence of demographic and physiological factors on isotope ratios. MethodsWe applied SIA of δ13C and δ15N to humpback whale (Megaptera novaeangliae) biopsies taken during the foraging season along the western Antarctic Peninsula to quantify intra‐individual variation from repeatedly sampled individuals, as well as to determine the effect of biopsy collection site, sex, and pregnancy on isotope ratios. ResultsThere was substantial variability in δ13C from multiple biopsies taken from the same individuals, though δ15N was much more consistent. Side of the body (left versus right) and biopsy location (dorsal, anterior, ventral, and posterior) did marginally affect the isotopic composition of δ15N but not δ13C. Pregnancy had a significant effect on both δ13C and δ15N, where pregnant females were depleted in both when compared to non‐pregnant females and males. ConclusionsThese results indicate that isotopic signatures are influenced by multiple endogenous and exogenous factors and emphasize value in accounting for intra‐individual variability and pregnancy status within a sampled population. Placed within an ecological context, the endogenous variability in δ13C observed here may be informative for future isotopic analyses. 
    more » « less
  3. Abstract RationaleThe use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS). MethodsPaired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS). ResultsPaired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference. ConclusionsThe noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear. 
    more » « less
  4. Abstract In urban areas, anthropogenic drivers of ecosystem structure and function are thought to predominate over larger‐scale biophysical drivers. Residential yards are influenced by individual homeowner preferences and actions, and these factors are hypothesized to converge yard structure across broad scales. We examined soil total C and total δ13C, organic C and organic δ13C, total N, and δ15N in residential yards and corresponding reference ecosystems in six cities across the United States that span major climates and ecological biomes (Baltimore, Maryland; Boston, Massachusetts; Los Angeles, California; Miami, Florida; Minneapolis‐St. Paul, Minnesota; and Phoenix, Arizona). Across the cities, we found soil C and N concentrations and soil δ15N were less variable in residential yards compared to reference sites supporting the hypothesis that soil C, N, and δ15N converge across these cities. Increases in organic soil C, soil N, and soil δ15N across urban, suburban, and rural residential yards in several cities supported the hypothesis that soils responded similarly to altered resource inputs across cities, contributing to convergence of soil C and N in yards compared to natural systems. Soil C and N dynamics in residential yards showed evidence of increasing C and N inputs to urban soils or dampened decomposition rates over time that are influenced by climate and/or housing age across the cities. In the warmest cities (Los Angeles, Miami, Phoenix), greater organic soil C and higher soil δ13C in yards compared to reference sites reflected the greater proportion of C4plants in these yards. In the two warm arid cities (Los Angeles, Phoenix), total soil δ13C increased and organic soil δ13C decreased with increasing home age indicating greater inorganic C in the yards around newer homes. In general, soil organic C and δ13C, soil N, and soil δ15N increased with increasing home age suggesting increased soil C and N cycling rates and associated12C and14N losses over time control yard soil C and N dynamics. This study provides evidence that conversion of native reference ecosystems to residential areas results in convergence of soil C and N at a continental scale. The mechanisms underlying these effects are complex and vary spatially and temporally. 
    more » « less
  5. ObjectiveTo elucidate the role of decorin, a small leucine‐rich proteoglycan, in the degradation of cartilage matrix during the progression of post‐traumatic osteoarthritis (OA). MethodsThree‐month–old decorin‐null (Dcn−/−) and inducible decorin‐knockout (DcniKO) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post‐traumaticOA. TheOAphenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy–nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro–computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild‐type and Dcn−/−mice were stimulated with the inflammatory cytokine interleukin‐1β (IL‐1β) in vitro (n = 6 mice per group). The resulting chondrocyte response toIL‐1β and release ofsGAGs were quantified. ResultsIn both Dcn−/−and DcniKOmice, the absence of decorin resulted in acceleratedsGAGloss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P< 0.05). Also, Dcn−/−mice developed more salient osteophytes, illustrating more severeOA. In cartilage explants treated withIL‐1β, loss of decorin did not alter the expression of either anabolic or catabolic genes. However, a greater proportion ofsGAGs was released to the media from Dcn−/−mouse explants, in both live and devitalized conditions (P< 0.05). ConclusionIn post‐traumaticOA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration. 
    more » « less