skip to main content

Title: Physiological and behavioral responses of house sparrows to repeated stressors
Despite decades of research, we still lack a complete understanding of what factors influence the transition of the necessary and adaptive acute stress response to what has become known as chronic stress. This gap in knowledge has illuminated the necessity for studies that examine the thresholds between these two sides of the stress response. Here, we determine how repeated exposure to acute stressors influences physiological and behavioral responses. In this repeated measures study, house sparrows ( Passer domesticus ) were exposed to a chronic stress protocol. We took physiological and behavioral measurements before, during, and after the protocol. Blood samples were used to assess four aspects of hypothalamic-pituitary-adrenal (HPA) axis function: baseline corticosterone, stress-induced corticosterone, negative feedback, and the maximal capacity to secrete corticosterone. We also assessed bacterial killing capacity and changes in uric acid concentration. Neophobia trials were used to assess behavioral changes throughout the protocol. We found no significant changes in HPA axis regulation in any of the four aspects we tested. However, we found that uric acid concentrations and neophobia significantly decreased after only four days of the chronic stress protocol, while bacterial killing capacity did not decrease until after eight days of exposure. These results indicate more » that different components of the stress response can be impacted by chronic stress on different timescales. Our results further indicate the importance of assessing multiple aspects of both physiology and behavior in order to understand how exposure to chronic stress may influence ability to cope with future challenges. « less
Authors:
; ; ;
Award ID(s):
1655269
Publication Date:
NSF-PAR ID:
10075208
Journal Name:
PeerJ
Volume:
6
Page Range or eLocation-ID:
e4961
ISSN:
2167-8359
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The hypothalamic–pituitary–adrenal (HPA) axis controls the release of glucocorticoids, which regulate immune and inflammatory function by modulating cytokines, white blood cells and oxidative stress via glucocorticoid receptor (GR) signaling. Although the response to HPA activation is well characterized in many species, little is known about the impacts of HPA activation during extreme physiological conditions. Hence, we challenged 18 simultaneously fasting and developing elephant seal pups with daily intramuscular injections of adrenocorticotropin (ACTH), a GR antagonist (RU486), or a combination of the two (ACTH+RU486) for 4 days. We collected blood at baseline, 2 h and 4 days after the beginning of treatment. ACTH and ACTH+RU486 elevated serum aldosterone and cortisol at 2 h, with effects diminishing at 4 days. RU486 alone induced a compensatory increase in aldosterone, but not cortisol, at 4 days. ACTH decreased neutrophils at 2 h, while decreasing lymphocytes and increasing the neutrophil:lymphocyte ratio at 4 days. These effects were abolished by RU486. Despite alterations in white blood cells, there was no effect of ACTH or RU486 on transforming growth factor-β or interleukin-6 levels; however, both cytokines decreased with the 4 day fasting progression. Similarly, ACTH did not impact protein oxidation, lipid peroxidation or antioxidant enzymes, but plasma isoprostanes and catalase activity decreased while glutathione peroxidasemore »increased with fasting progression. These data demonstrate differential acute (2 h) and chronic (4 days) modulatory effects of HPA activation on white blood cells and that the chronic effect is mediated, at least in part, by GR. These results also underscore elephant seals' extraordinary resistance to oxidative stress derived from repeated HPA activation.« less
  2. One aspect of the Reactive Scope Model is wear-and-tear, which describes a decrease in an animal’s ability to cope with a stressor, typically because of a period of chronic or repeated stressors. We investigated whether wear-and-tear due to chronic stress would accelerate a transition from phase II to phase III of fasting. We exposed house sparrows (Passer domesticus) to three weeks of daily fasts combined with daily intermittent repeated acute stressors to create chronic stress, followed by two weeks of daily fasts without stressors. We measured circulating glucose, β-hydroxybutyrate (a ketone), and uric acid in both fasted and fed states. We expected birds to be in phase II (high fat breakdown) in a fasted state, but if wear-and-tear accumulated sufficiently, we hypothesized a shift to phase III (high protein breakdown). Throughout the experiment, the birds exhibited elevated β-hydroxybutyrate when fasting but no changes in circulating uric acid, indicating that a transition to phase III did not occur. In both a fasted and fed state, the birds increased glucose mobilization throughout the experiment, suggesting wear-and-tear occurred, but was not sufficient to induce a shift to phase III. Additionally, the birds exhibited a significant decrease in weight, no change in corticosterone, andmore »a transient decrease in neophobia with chronic stress. In conclusion, the birds appear to have experienced wear-and-tear, but our protocol did not accelerate the transition from phase II to phase III of fasting.« less
  3. ABSTRACT There are complex interactions between an organism's microbiome and its response to stressors, often referred to as the ‘gut–brain axis’; however, the ecological relevance of this axis in wild animals remains poorly understood. Here, we used a chronic mild stress protocol to induce stress in wild-caught house sparrows (Passer domesticus), and compared microbial communities among stressed animals, those recovering from stress, captive controls (unstressed) and a group not brought into captivity. We assessed changes in microbial communities and abundance of shed microbes by culturing cloacal samples on multiple media to select for aerobic and anaerobic bacteria and fungi. We complemented this with cultivation-independent 16S and ITS rRNA gene amplification and sequencing, pairing these results with host physiological and immune metrics, including body mass change, relative spleen mass and plasma corticosterone concentrations. We found significant effects of stress and captivity on the house sparrow microbiomes, with stress leading to an increased relative abundance of endotoxin-producing bacteria – a possible mechanism for the hyperinflammatory response observed in captive avians. While we found evidence that the microbiome community partially recovers after stress cessation, animals may lose key taxa, and the abundance of endotoxin-producing bacteria persists. Our results suggest an overall link betweenmore »chronic stress, host immune system and the microbiome, with the loss of potentially beneficial taxa (e.g. lactic acid bacteria), and an increase in endotoxin-producing bacteria due to stress and captivity. Ultimately, consideration of the host's microbiome may be useful when evaluating the impact of stressors on individual and population health.« less
  4. Cooke, Steven (Ed.)
    Abstract Wild animals brought into captivity frequently experience chronic stress and typically need a period of time to adjust to the conditions of captivity (restraint, artificial lighting, altered diet, human presence, etc.), to which they may never fully acclimate. Changes in mass, the hypothalamic–pituitary–adrenal axis and heart rate parameters have been observed over the first week in newly captive house sparrows (Passer domesticus). In this study, we tested the effects of two drugs, diazepam and mitotane, in preventing the chronic stress symptoms caused by captivity, compared with oil-injected control animals. Diazepam is an anxiolytic that is widely prescribed in humans and other animals and has been shown in some cases to reduce physiological stress. Mitotane is an agent that causes chemical adrenalectomy, reducing the body’s capacity to produce glucocorticoid hormones. Our mitotane treatment did not cause the expected change in corticosterone concentrations. Baseline corticosterone was higher after a week in captivity regardless of the treatment group, while stress-induced corticosterone did not significantly increase above baseline after a week in captivity in any treatment group. However, mitotane treatment did have some physiological effects, as it reduced the resting heart rate and the duration of the heart rate response to a suddenmore »noise. It also prevented the increase in nighttime activity that we observed in control animals. There was no effect of diazepam on corticosterone, resting heart rate, activity or heart rate response to a sudden noise, and no effect of either treatment on the sympathetic vs parasympathetic control of the resting heart rate. Together, these data suggest that mitotane, but not diazepam, can have a modest impact on helping house sparrows adapt to captive conditions. Easing the transition to captivity will likely make conservation efforts, such as initiating captive breeding programs, more successful.« less
  5. Cooke, Steven (Ed.)
    Abstract Baleen whales are subject to a myriad of natural and anthropogenic stressors, but understanding how these stressors affect physiology is difficult. Measurement of adrenal glucocorticoid (GC) hormones involved in the vertebrate stress response (cortisol and corticosterone) in baleen could help fill this data gap. Baleen analysis is a powerful tool, allowing for a retrospective re-creation of multiple years of GC hormone concentrations at approximately a monthly resolution. We hypothesized that whales that died from acute causes (e.g. ship strike) would have lower levels of baleen GCs than whales that died from extended illness or injury (e.g. long-term entanglement in fishing gear). To test this hypothesis, we extracted hormones from baleen plates of four humpback whales (Megaptera novaeangliae) with well-documented deaths including multiple and chronic entanglements (n = 1, female), ship strike (n = 2, male and female) and chronic illness with nutritional stress (n = 1, male). Over ~3 years of baleen growth and during multiple entanglements, the entangled whale had average corticosterone levels of 80–187% higher than the other three whales but cortisol levels were similar to two of the other three whales. The nutritionally stressed and chronically ill whale showed a slow increase in both cortisol and corticosteronemore »spanning ~3 years, followed by a sharp decline in both hormones before death, possibly indicative of adrenal failure in this moribund individual. This whale’s correlation between cortisol and corticosterone was significant but there were no correlations in the other three whales. Our results show that cortisol and corticosterone concentrations vary according to the type and duration of illness or injury. Single-point GC concentrations should be interpreted with caution as low values can occur in whales experiencing pronounced stress and individual baselines can be highly variable. Baleen analysis is a promising tissue type for retrospective analyses of physiological responses to various stressors affecting baleen whales.« less