skip to main content


Title: The Effect of a Combined Fast and Chronic Stress on Body Mass, Blood Metabolites, Corticosterone, and Behavior in House Sparrows (Passer domesticus)
One aspect of the Reactive Scope Model is wear-and-tear, which describes a decrease in an animal’s ability to cope with a stressor, typically because of a period of chronic or repeated stressors. We investigated whether wear-and-tear due to chronic stress would accelerate a transition from phase II to phase III of fasting. We exposed house sparrows (Passer domesticus) to three weeks of daily fasts combined with daily intermittent repeated acute stressors to create chronic stress, followed by two weeks of daily fasts without stressors. We measured circulating glucose, β-hydroxybutyrate (a ketone), and uric acid in both fasted and fed states. We expected birds to be in phase II (high fat breakdown) in a fasted state, but if wear-and-tear accumulated sufficiently, we hypothesized a shift to phase III (high protein breakdown). Throughout the experiment, the birds exhibited elevated β-hydroxybutyrate when fasting but no changes in circulating uric acid, indicating that a transition to phase III did not occur. In both a fasted and fed state, the birds increased glucose mobilization throughout the experiment, suggesting wear-and-tear occurred, but was not sufficient to induce a shift to phase III. Additionally, the birds exhibited a significant decrease in weight, no change in corticosterone, and a transient decrease in neophobia with chronic stress. In conclusion, the birds appear to have experienced wear-and-tear, but our protocol did not accelerate the transition from phase II to phase III of fasting.  more » « less
Award ID(s):
1655269
NSF-PAR ID:
10351073
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Yale journal of biology and medicine
Volume:
95
Issue:
1
ISSN:
0044-0086
Page Range / eLocation ID:
19-31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the biggest unanswered questions in the field of stress physiology is whether variation in chronic stress intensity will produce proportional (a gradient or graded) physiological response. We were specifically interested in the timing of the entrance into homeostatic overload, or the start of chronic stress symptoms. To attempt to fill this knowledge gap we split 40 captive house sparrows (Passer domesticus) into four groups (high stress, medium stress, low stress, and a captivity-only control) and subjected them to six bouts of chronic stress over a 6-month period. We varied the number of stressors/day and the length of each individual bout with the goal of producing groups that would experience different magnitudes of wear-and-tear. To evaluate the impact of chronic stress, at the start and end of each stress bout we measured body weight and three plasma metabolites (glucose, ketones, and uric acid) in both a fasted and fed state. All metrics showed significant differences across treatment groups, with the high stress group most frequently showing the greatest changes. However, the changes did not produce a consistent profile that matched the different chronic stress intensities. We also took samples after a prolonged recovery period of 6 weeks after the chronic stressors ended. The only group difference that persisted after 6 weeks was weight—all differences across groups in metabolites recovered. The results indicate that common blood metabolites are sensitive to stressors and may show signs of wear-and-tear, but are not reliable indicators of the intensity of long-term chronic stress. Furthermore, regulatory mechanisms are robust enough to recover within 6 weeks post-stress.

     
    more » « less
  2. Abstract

    Neophobia is an animal's avoidance of novelty. Animals tend to respond to novel objects by increasing their latency to approach the objects, and they eventually habituate after repeated exposure by attenuating this increased approach latency. Interestingly, the physiological stress response does not appear to have a causal link to neophobia, although acute stress can prevent animals from habituating to novel objects, possibly through a permissive effect. Chronic stress can induce an anxiety‐like state in animals, while often disrupting the ability to respond to acute stress. We thus hypothesized that chronic stress may increase neophobia and tested this by inducing chronic stress in wild‐caught European starlings (Sturnus vulgaris). Four distinct anthropogenic stressors were administered daily for 30 min each in a randomized order for 21 days. We then evaluated whether exposure to chronic stress altered the latency to approach a novel object placed on or near a food dish presented after overnight fasting. Chronically stressed birds and nonstressed controls exhibited similar initial neophobic responses to novel objects and showed similar habituation in response to repeated exposure. However, when birds were exposed to 15 min of restraint before repeated exposure to the same object, habituation was eliminated in control birds (i.e., they continued to respond with neophobia), whereas chronically stressed birds continued to show habituation as measured by attenuated approach latencies. These results demonstrate that an acute stress response (restraint) has a different impact on neophobia depending upon whether the bird is or is not concurrently exposed to chronic stress.

     
    more » « less
  3. Abstract

    To further elucidate the role that wear‐and‐tear plays in the transition from acute to chronic stress, we manipulated the intensity and duration of applied chronic stress to determine if behavior would respond proportionately. We brought wild house sparrows into captivity and subjected them to high‐stress, medium‐stress, low‐stress, or captivity‐only. We varied the number of stressors per day and the duration of stress periods to vary wear‐and‐tear, and thus the potential to exhibit chronic stress symptoms. The behaviors we assessed were neophobia (the fear of the new; assessed via food approach latency) and perch hopping (activity). We predicted that our birds would show proportionate decreases in neophobia and activity throughout a long‐term chronic stress paradigm. Our results indicate that neophobia is sensitive to the intensity of chronic stress, however, the birds became more neophobic, which was the opposite of what we expected. Conversely, perch hopping did not differ across treatment groups and is thus not sensitive to the intensity of chronic stress. Together, these data show that different behavioral measurements are impacted differently by chronic stress.

     
    more » « less
  4. Despite decades of research, we still lack a complete understanding of what factors influence the transition of the necessary and adaptive acute stress response to what has become known as chronic stress. This gap in knowledge has illuminated the necessity for studies that examine the thresholds between these two sides of the stress response. Here, we determine how repeated exposure to acute stressors influences physiological and behavioral responses. In this repeated measures study, house sparrows ( Passer domesticus ) were exposed to a chronic stress protocol. We took physiological and behavioral measurements before, during, and after the protocol. Blood samples were used to assess four aspects of hypothalamic-pituitary-adrenal (HPA) axis function: baseline corticosterone, stress-induced corticosterone, negative feedback, and the maximal capacity to secrete corticosterone. We also assessed bacterial killing capacity and changes in uric acid concentration. Neophobia trials were used to assess behavioral changes throughout the protocol. We found no significant changes in HPA axis regulation in any of the four aspects we tested. However, we found that uric acid concentrations and neophobia significantly decreased after only four days of the chronic stress protocol, while bacterial killing capacity did not decrease until after eight days of exposure. These results indicate that different components of the stress response can be impacted by chronic stress on different timescales. Our results further indicate the importance of assessing multiple aspects of both physiology and behavior in order to understand how exposure to chronic stress may influence ability to cope with future challenges. 
    more » « less
  5. Epidemiological studies suggest that insulin resistance accelerates progression of age-based cognitive impairment, which neuroimaging has linked to brain glucose hypometabolism. As cellular inputs, ketones increase Gibbs free energy change for ATP by 27% compared to glucose. Here we test whether dietary changes are capable of modulating sustained functional communication between brain regions (network stability) by changing their predominant dietary fuel from glucose to ketones. We first established network stability as a biomarker for brain aging using two large-scale ( n = 292, ages 20 to 85 y; n = 636, ages 18 to 88 y) 3 T functional MRI (fMRI) datasets. To determine whether diet can influence brain network stability, we additionally scanned 42 adults, age < 50 y, using ultrahigh-field (7 T) ultrafast (802 ms) fMRI optimized for single-participant-level detection sensitivity. One cohort was scanned under standard diet, overnight fasting, and ketogenic diet conditions. To isolate the impact of fuel type, an independent overnight fasted cohort was scanned before and after administration of a calorie-matched glucose and exogenous ketone ester ( d -β-hydroxybutyrate) bolus. Across the life span, brain network destabilization correlated with decreased brain activity and cognitive acuity. Effects emerged at 47 y, with the most rapid degeneration occurring at 60 y. Networks were destabilized by glucose and stabilized by ketones, irrespective of whether ketosis was achieved with a ketogenic diet or exogenous ketone ester. Together, our results suggest that brain network destabilization may reflect early signs of hypometabolism, associated with dementia. Dietary interventions resulting in ketone utilization increase available energy and thus may show potential in protecting the aging brain. 
    more » « less